Three-Dimensional Collagen/Alginate Hybrid Scaffolds Functionalized with a Drug Delivery System (DDS) for Bone Tissue Regeneration

2011 ◽  
Vol 24 (5) ◽  
pp. 881-891 ◽  
Author(s):  
Hyeong-jin Lee ◽  
Seung-Hyun Ahn ◽  
Geun Hyung Kim
2021 ◽  
Vol 209 ◽  
pp. 109962
Author(s):  
Mohammed A. Al-Baadani ◽  
Kendrick Hii Ru Yie ◽  
Abdullrahman M. Al-Bishari ◽  
Bilal A. Alshobi ◽  
Zixin Zhou ◽  
...  

2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Author(s):  
María Vallet-Regí ◽  
Isabel Izquierdo-Barba ◽  
Montserrat Colilla

This review article describes the importance of structure and functionalization in the performance of mesoporous silica bioceramics for bone tissue regeneration and local drug delivery purposes. Herein, we summarize the pivotal features of mesoporous bioactive glasses, also known as ‘templated glasses’ (TGs), which present chemical compositions similar to those of conventional bioactive sol–gel glasses and the added value of an ordered mesopore arrangement. An in-depth study concerning the possibility of tailoring the structural and textural characteristics of TGs at the nanometric scale and their influence on bioactive behaviour is discussed. The highly ordered mesoporous arrangement of cavities allows these materials to confine drugs to be subsequently released, acting as drug delivery devices. The functionalization of mesoporous silica walls has been revealed as the cornerstone in the performance of these materials as controlled release systems. The synergy between the improved bioactive behaviour and local sustained drug release capability of mesostructured materials makes them suitable to manufacture three-dimensional macroporous scaffolds for bone tissue engineering. Finally, this review tackles the possibility of covalently grafting different osteoinductive agents to the scaffold surface that act as attracting signals for bone cells to promote the bone regeneration process.


Sign in / Sign up

Export Citation Format

Share Document