Three-dimensional cellulose-hydroxyapatite nanocomposite enriched with dexamethasone loaded metal–organic framework: a local drug delivery system for bone tissue engineering

Cellulose ◽  
2019 ◽  
Vol 26 (12) ◽  
pp. 7253-7269 ◽  
Author(s):  
Chandrani Sarkar ◽  
Angshuman Ray Chowdhuri ◽  
Subhadra Garai ◽  
Jui Chakraborty ◽  
Sumanta Kumar Sahu
2022 ◽  
Vol 23 ◽  
pp. 100670
Author(s):  
M. Asadniaye Fardjahromi ◽  
H. Nazari ◽  
S.M. Ahmadi Tafti ◽  
A. Razmjou ◽  
S. Mukhopadhyay ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 24-26 ◽  
Author(s):  
Michala Rampichová ◽  
Matej Buzgo ◽  
Věra Lukášová ◽  
Andrea Míčková ◽  
Karolína Vocetková ◽  
...  

3D materials supporting cell adhesion, infiltration and proliferation are crucial for bone tissue engineering. In the current study we combined PCL fibers prepared using centrifugal spinning with adhered liposomes filled with platelet lysate as a natural source of growth factors. The scaffold was seeded with MG-63 cells and tested in vitro as a potential drug delivery system for bone tissue engineering.


2018 ◽  
Vol 1 (3) ◽  
pp. 25-93 ◽  
Author(s):  
Sergey V. Dorozhkin

The chemical and structural similarities of calcium orthophosphates (abbreviated as CaPO4)to the mineral composition of natural bones and teeth have made them a good candidate for bone tissue engineering applications. Nowadays, a variety of natural or synthetic CaPO4-based biomaterials is produced and has been extensively used for dental and orthopedic applications. Despite their inherent brittleness, CaPO4 materials possess several appealing characteristics as scaffold materials. Namely, their biocompatibility and variable stoichiometry, thus surface charge density, functionality and dissolution properties, make them suitable for both drug and growth factor delivery. Therefore, CaPO4, especially hydroxyapatite (HA) and tricalcium phosphates (TCPs), have attracted a significant interest in simultaneous use as bone grafts and drug delivery vehicles. Namely, CaPO4-based three-dimensional (3D) scaffolds and/or carriers have been designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various types of drugs, biologically active molecules and/or cells. Over the past few decades, their application as bone grafts in combination with stem cells has gained much importance. This review discusses the source, manufacturing methods and advantages of using CaPO4 scaffolds for bone tissue engineering applications. Perspective future applications comprise drug delivery and tissue engineering purposes.


2014 ◽  
Vol 25 (42) ◽  
pp. 425701 ◽  
Author(s):  
Alessandro Pistone ◽  
Daniela Iannazzo ◽  
Silvia Panseri ◽  
Monica Montesi ◽  
Anna Tampieri ◽  
...  

2009 ◽  
Vol 7 (43) ◽  
pp. 209-227 ◽  
Author(s):  
Viviana Mouriño ◽  
Aldo R. Boccaccini

This paper provides an extensive overview of published studies on the development and applications of three-dimensional bone tissue engineering (TE) scaffolds with potential capability for the controlled delivery of therapeutic drugs. Typical drugs considered include gentamicin and other antibiotics generally used to combat osteomyelitis, as well as anti-inflammatory drugs and bisphosphonates, but delivery of growth factors is not covered in this review. In each case reviewed, special attention has been given to the technology used for controlling the release of the loaded drugs. The possibility of designing multifunctional three-dimensional bone TE scaffolds for the emerging field of bone TE therapeutics is discussed. A detailed summary of drugs included in three-dimensional scaffolds and the several approaches developed to combine bioceramics with various polymeric biomaterials in composites for drug-delivery systems is included. The main results presented in the literature are discussed and the remaining challenges in the field are summarized with suggestions for future research directions.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document