Redox-Active Ultrathin Template of Silk Fibroin: Effect of Secondary Structure on Gold Nanoparticle Reduction

2009 ◽  
Vol 21 (13) ◽  
pp. 2696-2704 ◽  
Author(s):  
Eugenia Kharlampieva ◽  
Dmitry Zimnitsky ◽  
Maneesh Gupta ◽  
Kathryn N. Bergman ◽  
David L. Kaplan ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6317
Author(s):  
Masaaki Aoki ◽  
Yu Masuda ◽  
Kota Ishikawa ◽  
Yasushi Tamada

The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.


2013 ◽  
Vol 172 (1) ◽  
pp. e52 ◽  
Author(s):  
Lin Ma ◽  
Qiaona Wei ◽  
Xi Huang ◽  
Yuxiao Wang

1980 ◽  
Vol 36 (7) ◽  
pp. T314-T316
Author(s):  
Masuhiro Tsukada ◽  
Yoshio Ishiguro ◽  
Kiyoshi Hirabayashi

2021 ◽  
Author(s):  
Ben Jia ◽  
Lan Jia ◽  
Jingxin Zhu

Abstract In this work, the potential application of the fluorescence dye Thioflavin-T (ThT), which can specifically bind to amyloid, as a powerful tool for monitoring secondary structure transitions of silk fibroin (SF) induced by pH was examined. Results showed that ThT emission intensities substantially increased when pH decreased from 6.8 to 4.8. This increase may be due to conformational transitions from random coil to β-sheet. The morphology and secondary structure of SF were also investigated via TEM, AFM and circular dichroism spectroscopy. The information obtained herein can be utilized not only for the development of convenient and efficient noninvasive method for monitoring the assembly behavior of SF in aqueous solution but also for in vitro fluorescence imaging.


2019 ◽  
Vol 89 (21-22) ◽  
pp. 4581-4594 ◽  
Author(s):  
Suhua Zhao ◽  
Hongliang Pan ◽  
Yali Liu ◽  
Yirong Zeng ◽  
Hongling Liu ◽  
...  

Historic silk fabric is an important part of Chinese precious cultural heritage and its protection has always been a major challenge. This paper proposes a bio-safety method by the chemical conjugation of transglutaminase (TGase or TG) and sodium caseinate (SC), which produced a macromolecular polymer between protein molecules and enhanced silk fabrics. The changes of the mechanical properties of the reinforced silk fabric after washing by 10 cycles were not obvious, indicating good washing durability. After TGase and SC reinforcement, the silk fibroin (SF) solution was sprayed on the surface of silk fabric to improve the mechanical properties, where the secondary structure were formed by the self-assembly of SF to improve the mechanical properties. Therefore, the breaking stress attained the maximum value when the SF solution concentration was 1.0%. Meanwhile, the breaking stress increased by about 20.89% compared with untreated silk fabric. When the artificially alkali aged silk fabric is reinforced, the breaking stress and strain of the reinforced sample increased by 37.77% relative to the alkali aged fabric. The surface morphology and secondary structure transformation of the samples were also analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The results indicated that a significant SF layer was introduced on the surface of the silk fabric and the β-sheet structure increased due to the synergetic role of the macromolecular polymer and SF. Moreover, it is concluded that an increase in temperature and humidity will result in a decrease in the preservation index, which caused the degradation of silk fabric and proved that the preservation time of the reinforced silk fabric in the same environment was longer than that of the unreinforced sample. The biological enzyme chemical conjugation with silk fabric and physical combination of the pure SF solution is expected to be applied to the protection and enhancement of silk cultural relics.


Sign in / Sign up

Export Citation Format

Share Document