Electrode Potentials and Hydration Energies. Theories and Correlations

1965 ◽  
Vol 65 (4) ◽  
pp. 467-490 ◽  
Author(s):  
D. R. Rosseinsky
Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3083
Author(s):  
Wisam A. Al Isawi ◽  
Gellert Mezei

Anion binding and extraction from solutions is currently a dynamic research topic in the field of supramolecular chemistry. A particularly challenging task is the extraction of anions with large hydration energies, such as the carbonate ion. Carbonate-binding complexes are also receiving increased interest due to their relevance to atmospheric CO2 fixation. Nanojars are a class of self-assembled, supramolecular coordination complexes that have been shown to bind highly hydrophilic anions and to extract even the most hydrophilic ones, including carbonate, from water into aliphatic solvents. Here we present an expanded nanojar that is able to bind two carbonate ions, thus doubling the previously reported carbonate-binding capacity of nanojars. The new nanojar is characterized by detailed single-crystal X-ray crystallographic studies in the solid state and electrospray ionization mass spectrometric (including tandem MS/MS) studies in solution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shofu Matsuda ◽  
Yuuki Niitsuma ◽  
Yuta Yoshida ◽  
Minoru Umeda

AbstractGenerating electric power using CO2 as a reactant is challenging because the electroreduction of CO2 usually requires a large overpotential. Herein, we report the design and development of a polymer electrolyte fuel cell driven by feeding H2 and CO2 to the anode (Pt/C) and cathode (Pt0.8Ru0.2/C), respectively, based on their theoretical electrode potentials. Pt–Ru/C is a promising electrocatalysts for CO2 reduction at a low overpotential; consequently, CH4 is continuously produced through CO2 reduction with an enhanced faradaic efficiency (18.2%) and without an overpotential (at 0.20 V vs. RHE) was achieved when dilute CO2 is fed at a cell temperature of 40 °C. Significantly, the cell generated electric power (0.14 mW cm−2) while simultaneously yielding CH4 at 86.3 μmol g−1 h−1. These results show that a H2-CO2 fuel cell is a promising technology for promoting the carbon capture and utilization (CCU) strategy.


1930 ◽  
Vol 88 (2) ◽  
pp. 605-614
Author(s):  
Russel J. Fosbinder ◽  
Janetta Schoonover

2010 ◽  
Vol 49 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Willem H. Koppenol ◽  
David M. Stanbury ◽  
Patricia L. Bounds

The difficulty of modelling ion channels in membranes due to the low electrostatic energy of small ions in aqueous solution is discussed. Models based upon ordered water cage structures are shown to provide suitable low energy binding sites which are selective both for unhydrated ionic size and valence. The barriers for motion of ions within these channels are shown to be low.


Sign in / Sign up

Export Citation Format

Share Document