SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics

2015 ◽  
Vol 11 (2) ◽  
pp. 723-739 ◽  
Author(s):  
Leonardo Darré ◽  
Matías Rodrigo Machado ◽  
Astrid Febe Brandner ◽  
Humberto Carlos González ◽  
Sebastián Ferreira ◽  
...  
2017 ◽  
Vol 146 (5) ◽  
pp. 054501 ◽  
Author(s):  
Julian Michalowsky ◽  
Lars V. Schäfer ◽  
Christian Holm ◽  
Jens Smiatek

Author(s):  
Mohammad Poursina ◽  
Jeremy Laflin ◽  
Kurt S. Anderson

In molecular simulations, the dominant portion of the computational cost is associated with force field calculations. Herein, we extend the approach used to approximate long range gravitational force and the associated moment in spacecraft dynamics to the coulomb forces present in coarse grained biopolymer simulations. We approximate the resultant force and moment for long-range particle-body and body-body interactions due to the electrostatic force field. The resultant moment approximated here is due to the fact that the net force does not necessarily act through the center of mass of the body (pseudoatom). This moment is considered in multibody-based coarse grain simulations while neglected in bead models which use particle dynamics to address the dynamics of the system. A novel binary divide and conquer algorithm (BDCA) is presented to implement the force field approximation. The proposed algorithm is implemented by considering each rigid/flexible domain as a node of the leaf level of the binary tree. This substructuring strategy is well suited to coarse grain simulations of chain biopolymers using an articulated multibody approach.


2021 ◽  
Vol 17 (3) ◽  
pp. 1562-1580 ◽  
Author(s):  
Yalun Yu ◽  
Andreas Krämer ◽  
Richard M. Venable ◽  
Andrew C. Simmonett ◽  
Alexander D. MacKerell ◽  
...  

2012 ◽  
Vol 25 (6) ◽  
pp. 1814-1826 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Andrew J. Majda

Abstract An information-theoretic framework is developed to assess the predictive skill and model error in imperfect climate models for long-range forecasting. Here, of key importance is a climate equilibrium consistency test for detecting false predictive skill, as well as an analogous criterion describing model error during relaxation to equilibrium. Climate equilibrium consistency enforces the requirement that long-range forecasting models should reproduce the climatology of prediction observables with high fidelity. If a model meets both climate consistency and the analogous criterion describing model error during relaxation to equilibrium, then relative entropy can be used as an unbiased superensemble measure of the model’s skill in long-range coarse-grained forecasts. As an application, the authors investigate the error in modeling regime transitions in a 1.5-layer ocean model as a Markov process and identify models that are strongly persistent but their predictive skill is false. The general techniques developed here are also useful for estimating predictive skill with model error for Markov models of low-frequency atmospheric regimes.


2017 ◽  
Vol 113 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Jaakko J. Uusitalo ◽  
Helgi I. Ingólfsson ◽  
Siewert J. Marrink ◽  
Ignacio Faustino

2018 ◽  
Vol 39 (28) ◽  
pp. 2360-2370 ◽  
Author(s):  
Adam K. Sieradzan ◽  
Artur Giełdoń ◽  
Yanping Yin ◽  
Yi He ◽  
Harold A. Scheraga ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


2018 ◽  
Vol 115 (38) ◽  
pp. E8882-E8891 ◽  
Author(s):  
Monica T. Posgai ◽  
Sam Tonddast-Navaei ◽  
Manori Jayasinghe ◽  
George M. Ibrahim ◽  
George Stan ◽  
...  

IgA effector functions include proinflammatory immune responses triggered upon clustering of the IgA-specific receptor, FcαRI, by IgA immune complexes. FcαRI binds to the IgA1–Fc domain (Fcα) at the CH2–CH3 junction and, except for CH2 L257 and L258, all side-chain contacts are contributed by the CH3 domain. In this study, we used experimental and computational approaches to elucidate energetic and conformational aspects of FcαRI binding to IgA. The energetic contribution of each IgA residue in the binding interface was assessed by alanine-scanning mutagenesis and equilibrium surface plasmon resonance (SPR). As expected, hydrophobic residues central to the binding site have strong energetic contributions to the FcαRI:Fcα interaction. Surprisingly, individual mutation of CH2 residues L257 and L258, found at the periphery of the FcαRI binding site, dramatically reduced binding affinity. Comparison of antibody:receptor complexes involving IgA or its precursor IgY revealed a conserved receptor binding site at the CH2–CH3 junction (or its equivalent). Given the importance of residues near the CH2–CH3 junction, we used coarse-grained Langevin dynamics simulations to understand the functional dynamics in Fcα. Our simulations indicate that FcαRI binding, either in an asymmetric (1:1) or symmetric (2:1) complex with Fcα, propagated long-range conformational changes across the Fc domains, potentially impacting the hinge and Fab regions. Subsequent SPR experiments confirmed that FcαRI binding to the Fcα CH2–CH3 junction altered the kinetics of HAA lectin binding at the IgA1 hinge. Receptor-induced long-distance conformational transitions have important implications for the interaction of aberrantly glycosylated IgA1 with anti-glycan autoantibodies in IgA nephropathy.


Sign in / Sign up

Export Citation Format

Share Document