An Atomic Counterpoise Method for Estimating Inter- and Intramolecular Basis Set Superposition Errors

2009 ◽  
Vol 6 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Frank Jensen

1988 ◽  
Vol 127 (1-3) ◽  
pp. 65-71 ◽  
Author(s):  
S. Tolosa ◽  
J.J. Esperilla ◽  
J. Espinosa ◽  
F.J.Olivares del Valle


2019 ◽  
Vol 234 (7-8) ◽  
pp. 483-493 ◽  
Author(s):  
Renjith S. Pillai ◽  
Miguel Jorge ◽  
José R.B. Gomes

Abstract In this paper, we present a systematic quantum-mechanical density functional theory (DFT) study of adsorption of small gas molecules in cation-exchanged Engelhard titanosilicate ETS-10 crystalline materials. Adsorbates with a range of polarities were considered, ranging from polar (H2O), quadrupolar (CO2 and N2), to apolar (CH4) atmospheric gases. Starting from the base-case of Na-ETS-10, other extra framework cations such as Li+, K+, Rb+ and Cs+ were considered. The DFT calculations were performed with the M06-L functional and were corrected for basis set superposition error with the counterpoise method in order to provide accurate and robust geometries and adsorption energies. For all adsorbates, the adsorption enthalpies decrease in the order Li+>Na+>K+>Rb+>Cs+, while adsorbate – cation interaction distances increase along the same order. For the two extreme cases, the enthalpies calculated at the M06-L/6-31++G** level of theory for CH4, N2, CO2, and H2O interaction with Li+(Cs+) exchanged materials are −21.8 (−1.7) kJ·mol−1, −19.0 (−10.7) kJ·mol−1, −34.4 (−21.3) kJ·mol−1, and −70.5 (−36.1) kJ·mol−1, respectively. Additionally, the calculated vibrational frequencies are found to be in quite good agreement with the characteristic vibrational modes of alkali metal cation-exchanged ETS-10 and also with the available experimental frequencies for CH4, N2, CO2, and H2O interactions with alkali metal cations in the 12-membered channel of ETS-10.



Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1810
Author(s):  
László Almásy ◽  
Attila Bende

The intermolecular interaction in difluoromethane, dichloromethane, dibromomethane, and diiodomethane dimers has been investigated using high level quantum chemical methods. The potential energy curve of intermolecular interaction along the C⋯C bond distance obtained using the coupled-cluster theory with singles, doubles, and perturbative triples excitations CCSD(T) were compared with values given by the same method, but applying the local (LCCSD(T)) and the explicitly correlated (CCSD(T)-F12) approximations. The accuracy of other theoretical methods—Hartree–Fock (HF), second order Møller–Plesset perturbation (MP2), and dispersion corrected DFT theory—were also presented. In the case of MP2 level, the canonical and the local-correlation cases combined with the density-fitting technique (DF-LMP2)theories were considered, while for the dispersion-corrected DFT, the empirically-corrected BLYP-D and the M06-2Xexchange-correlation functionals were applied. In all cases, the aug-cc-pVTZ basis set was used, and the results were corrected for the basis set superposition error (BSSE) using the counterpoise method. For each molecular system, several dimer geometries were found, and their mutual orientations were compared with the nearest neighbor orientations obtained in recent neutron scattering studies. The nature of the intermolecular interaction energy was discussed.



2014 ◽  
Vol 70 (12) ◽  
pp. 1125-1132 ◽  
Author(s):  
David K. Geiger ◽  
H. Cristina Geiger ◽  
Jared M. Deck

The synthesis and structural characterization of 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole [C16H12N2O2, (I)], 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazol-3-ium chloride monohydrate [C16H13N2O2+·Cl−·H2O, (II)] and the hydrobromide salt 5,6-dimethyl-2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazol-3-ium bromide [C18H17N2O2+·Br−, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head-to-tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2-(furan-2-yl) (abbreviated as Fn) and 1-(furan-2-ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion-center-related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to theaaxis. There is also a head-to-head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion-center-related benzimidazole rings in a head-to-tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy-corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06-2X/6-31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H-atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy-minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2-(furan-2-yl)-1H-benzimidazole.



2003 ◽  
Vol 68 (3) ◽  
pp. 587-626 ◽  
Author(s):  
Jacek Jakowski ◽  
Grzegorz Chałasiński ◽  
Małgorzata M. Szczęśniak ◽  
Slawomir M. Cybulski

The Na2B, Na3, and H3 trimers in the lowest quartet states were studied by ab initio methods, using both the supermolecular approach and the intermolecular Møller-Plesset perturbation theory. Partitioning of the nonadditive contribution into the orientational two-body part and the genuine three-body part was proposed. The lowest quartet state of the Na3 trimer and all the three lowest quartet states of the Na2B trimer are bound, and the forms of these clusters are essentially determined by two-body forces. In the case of the Na2B trimer the orientational two-body nonadditivity proved to be crucial. In addition, in the title metal trimers, in the region of the van der Waals minima, the genuine nonadditivity is very important, and amounts to 30% in Na2B and up to 70% in Na3. The leading nonadditive term is the triple-exchange Heitler-London exchange term. For triangular arrangements it considerably enhances the total stabilization. The single-exchange term and the SCF deformation play only a secondary role. The dispersion nonadditivity is negligible. The isotropic part of the basis set superposition error (BSSE) is large and must be corrected by the counterpoise method. The anisotropic contribution to BSSE is practically negligible.



1986 ◽  
Vol 129 (3) ◽  
pp. 325-328 ◽  
Author(s):  
M. Gutowski ◽  
F.B. Van Duijneveldt ◽  
G. Chałasiński ◽  
L. Piela


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110642-110655 ◽  
Author(s):  
David A. Rincón ◽  
M. Natália D. S. Cordeiro ◽  
Ricardo A. Mosquera

QTAIM atomic properties variation upon interaction is analyzed by: (i) deformation; (ii) BSSE estimated by counterpoise method; and (iii) binding.



2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.



2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>



Sign in / Sign up

Export Citation Format

Share Document