Hardwood Biomass to Gasoline, Diesel, and Jet Fuel: 2. Supply Chain Optimization Framework for a Network of Thermochemical Refineries

2013 ◽  
Vol 27 (8) ◽  
pp. 4325-4352 ◽  
Author(s):  
Josephine A. Elia ◽  
Richard C. Baliban ◽  
Christodoulos A. Floudas ◽  
Barri Gurau ◽  
Michael B. Weingarten ◽  
...  
2017 ◽  
Vol 102 ◽  
pp. 40-51 ◽  
Author(s):  
Narayen Kalyanarengan Ravi ◽  
Martin Van Sint Annaland ◽  
Jan C. Fransoo ◽  
Johan Grievink ◽  
Edwin Zondervan

2019 ◽  
Author(s):  
Nathanial Cooper ◽  
Anna Panteli ◽  
Nilay Shah

Abstract Biomass and the bio-economy have strong potential to help shift dependency away from petroleum. Supply chain optimisation (SCO) has been used to help other industries and can be used to boost biomass industry viability. Biomass supply chain models frequently average the biomass yield of large tracts of land in their calculations. However, there can be large variation in the biomass yield within those tracts, losing useful information. This work presents a biomass SCO framework which approximates the available quality of land by piecewise linearly approximation of the biomass yield distribution, and incorporates this information into the optimisation. The linear estimates of the biomass yield distributions allow the SCO model to make more informed decisions about quantity and location of biomass growth operations, affecting all downstream decisions. A case study of mainland Great Britain has been examined using the framework to illustrate the impact of retaining biomass yield information in the optimisation, versus averaging the yield across tracts of land. The case study found that using biomass yield linear estimates reduced the overall land usage by 10%. Further, it improved biomass output, which increased the quantity of bio-products produced. All of this led to an increase in the overall profit.


2022 ◽  
Vol 307 ◽  
pp. 117683
Author(s):  
Timo Wassermann ◽  
Henry Muehlenbrock ◽  
Philipp Kenkel ◽  
Edwin Zondervan

2005 ◽  
Vol 29 (6) ◽  
pp. 1305-1316 ◽  
Author(s):  
E.P. Schulz ◽  
M.S. Diaz ◽  
J.A. Bandoni

2015 ◽  
Vol 183 ◽  
pp. 291-307 ◽  
Author(s):  
Niklas von der Assen ◽  
André Sternberg ◽  
Arne Kätelhön ◽  
André Bardow

Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ágota Bányai ◽  
Tamás Bányai ◽  
Béla Illés

The globalization of economy and market led to increased networking in the field of manufacturing and services. These manufacturing and service processes including supply chain became more and more complex. The supply chain includes in many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on metaheuristic algorithms. This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization. The integrated model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based supply chain.


Sign in / Sign up

Export Citation Format

Share Document