Recovery of CO2from Flue Gas Using Gas Hydrate:  Thermodynamic Verification through Phase Equilibrium Measurements

2000 ◽  
Vol 34 (20) ◽  
pp. 4397-4400 ◽  
Author(s):  
Seong-Pil Kang ◽  
Huen Lee
2019 ◽  
Author(s):  
Song Deng ◽  
Yali Liu ◽  
Xia Wei ◽  
Lei Tao ◽  
Yanfeng He

2012 ◽  
Vol 48 ◽  
pp. 13-27 ◽  
Author(s):  
Peter Jørgensen Herslund ◽  
Kaj Thomsen ◽  
Jens Abildskov ◽  
Nicolas von Solms

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Pandey ◽  
Daas ◽  
Solms

In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.


2009 ◽  
Vol 54 (3) ◽  
pp. 996-999 ◽  
Author(s):  
Takashi Makino ◽  
Michiko Mori ◽  
Yasutaka Mutou ◽  
Takeshi Sugahara ◽  
Kazunari Ohgaki

2018 ◽  
Vol 6 (5) ◽  
pp. 5732-5736 ◽  
Author(s):  
Aliakbar Hassanpouryouzband ◽  
Jinhai Yang ◽  
Bahman Tohidi ◽  
Evgeny Chuvilin ◽  
Vladimir Istomin ◽  
...  

2020 ◽  
Author(s):  
Aliakbar Hassanpouryouzband ◽  
Katriona Edlmann ◽  
Jinhai Yang ◽  
Bahman Tohidi ◽  
Evgeny Chuvilin

<p>Power plants emit large amounts of carbon dioxide into the atmosphere primarily through the combustion of fossil fuels, leading to accumulation of increased greenhouse gases in the earth’s atmosphere. Global climate changing has led to increasing global mean temperatures, particularly over the poles, which threatens to melt gas hydrate reservoirs, releasing previously trapped methane and exacerbating the situation.  Here we used gas hydrate-based technologies to develop techniques for capturing and storing CO<sub>2</sub> present in power plant flue gas as stable hydrates, where CO<sub>2</sub> replaces methane within the hydrate structure. First, we experimentally measured the thermodynamic properties of various flue gases, followed by modelling and tuning the equations of state. Second, we undertook proof of concept investigations of the injection of CO2 flue gas into methane gas hydrate reservoirs as an option for economically sustainable production of natural gas as well as carbon capture and storage. The optimum injection conditions were found and reaction kinetics was investigated experimentally under realistic conditions. Third, the kinetics of flue gas hydrate formation for both the geological storage of CO<sub>2</sub> and the secondary sealing of CH<sub>4</sub>/CO<sub>2</sub> release in one simple process was investigated, followed by a comprehensive investigation of hydrate formation kinetics using a highly accurate in house developed experimental apparatus, which included an assessment of the gas leakage risks associated with above processes.  Finally, the impact of the proposed methods on permeability and mechanical strength of the geological formations was investigated.</p>


2016 ◽  
Vol 34 (16) ◽  
pp. 1431-1438 ◽  
Author(s):  
Alireza Baghban ◽  
Saman Namvarrechi ◽  
Le Thi Kim Phung ◽  
Moonyong Lee ◽  
Alireza Bahadori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document