Compilation and Application of Japanese Inventories for Energy Consumption and Air Pollutant Emissions Using Input−Output Tables

2003 ◽  
Vol 37 (9) ◽  
pp. 2005-2015 ◽  
Author(s):  
Keisuke Nansai ◽  
Yuichi Moriguchi ◽  
Susumu Tohno
2012 ◽  
Vol 12 (1) ◽  
pp. 481-501 ◽  
Author(s):  
B. Zhao ◽  
P. Wang ◽  
J. Z. Ma ◽  
S. Zhu ◽  
A. Pozzer ◽  
...  

Abstract. Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and chemical plants. The estimated regional NO2 emissions are about 2–3% (administrative Huabei region) or 5% (larger Huabei region) of the global anthropogenic NO2 emissions. We compare our inventory (IPAC-NC) with the global emission inventory EDGAR-CIRCE and the Asian emission inventory INTEX-B. Except for a factor of 3 lower EC emission rate in comparison with INTEX-B, the biases of the total emissions of most primary air pollutants in Huabei estimated in our inventory, with respect to EDGAR-CIRCE and INTEX-B, generally range from −30% to +40%. Large differences up to a factor of 2–3 for local emissions in some areas (e.g. Beijing and Tianjin) are found. It is recommended that the inventories based on the activity rates and emission factors for each specific year should be applied in future modeling work related to the changes in air quality and atmospheric chemistry over this region.


2020 ◽  
Vol 2 (2) ◽  
pp. 180-184
Author(s):  
Valeriu Danciulescu ◽  
◽  
Elena Bucur ◽  
Mihaela Petrescu ◽  
Mihai Bratu ◽  
...  

In this paper, a comparison is made of the level of air pollution between two brick production lines that apply different technologies, one old and one new, and more efficient. The main pollutants emitted in the air from the baking kilns are CO, SO2, NO2, HCl, HF, and dust. The monitoring of emissions was performed with a Testo 350 flue gas analyzer – the automatic method. A Paul Gothe isokinetic sampler was used to take dust, HCl, and HF sampling, and the analysis was performed in the laboratory using gravimetric and spectrophotometric analytical methods. The results of the tests performed showed a reduction in the level of pollution by applying the new and BAT technologies by up to 90% for all monitored pollutants, compared to the pollution produced by old and non-re-technologized line. At the same time, energy consumption is lower per unit of product, which results in a significant decrease in production costs.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2719-2727
Author(s):  
Bing Qiao ◽  
Yi Chao Liu ◽  
Wei Jian He ◽  
Yu Jun Tian ◽  
Yue Li ◽  
...  

Based on methods of the fuel consumption, statistical and analogy analysis, the throughput amount method was established to calculate the emissions from port handling, and the minimum mileage method was established to estimate emissions from port cargo highway distributing. In the methods, some coefficients were used obtained by investigations: the current container handling emission factors of NOx, VOCs, CO, PM2.5 and SOx are 1.64, 0.21, 0.42, 0.01 and 0.29 t/TEU; the energy consumption of the unit throughput is 4.12 tons of standard coal per 104tons; the ratios of the unit non container cargoe handling energy consumption for coastal and inland river ports to those of container cargo are 0.631 and 0.405; the ratio of the unit non container cargoe highway distributing energy consumption to those of container cargo is 0.365. The calculation results show that the total emissions from the cargo handling and highway distributing of 2013 in China for NOx, VOCs, CO, PM2.5 and SOx are 54.365, 14.821, 24.631, 5.599 and 16.802 104tons, and the emissions from highway distributing are 4.21, 10.02, 8.24, 8.22 and 8.19 times of the emissions from port handling facilities. According to energy saving and emission reduction measures, formulas were established to calculate air pollutant emissions after the new added measures. Analyzing the real performance of the measures implemented since 2001 and predicting its trend of development, a scenario was designed, in which the Chinese port throughput continuously rises while the energy saving and emission reduction efforts gradually increase by 2020: the popularities of the energy saving measure of "oil changing to electricity" and the clean fuel measure of "oil changing to gas" reach 100% and 83%; the proportion of power plants with 95% desulfurization and denitrification reaches 100%; the energy saving and emission reduction efficiency of port cargo distributing optimization measures reaches 40%. Under this scenario, the prediction shows that during the port throughput increasing approximately 4.2 times from 2005 to 2020, the air pollutant emissions will be reduced significantly, returning to a lower level compared with 2005. The above methods and results can be used to support the decision-making and the implementation of emission reduction measures for the national, regional and port enterprises.


2011 ◽  
Vol 11 (7) ◽  
pp. 20331-20374 ◽  
Author(s):  
B. Zhao ◽  
P. Wang ◽  
J. Z. Ma ◽  
S. Zhu ◽  
A. Pozzer ◽  
...  

Abstract. Huabei is a part of eastern China located between 32° N and 42° N latitude. Administratively it is a region including Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on the data from the statistical yearbooks of state and provinces as well as local districts including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and chemical plants. The estimated regional NO2 emissions are about 2–3 % (administrative Huabei region) or 5 % (larger Huabei region) of the global anthropogenic NO2 emissions. We compare our inventory (IPAC-NC) with a global emission inventory EDGAR-CIRCE and an Asian emission inventory INTEX-B. While the total emissions in Huabei are comparable with each other, large differences up to a factor of 2–3 for local emissions in the areas such as the Beijing and Tianjin megacities are found. We expect that our inventory will provide more practical spatial distributions of air pollutant emissions in the Huabei region of China and can be applied for air pollution and chemistry research on this region in the future.


2019 ◽  
Vol 116 ◽  
pp. 00044
Author(s):  
Piotr Lis

The communal and living sector, to the extent that it is the sub-sector of buildings with a majority share of residential buildings, on average, account for approximately 41% of total energy consumption in the European Union. Due to a large share in the total energy consumption, the buildings sector has a significant potential to improve the energy efficiency of existing buildings and thus significantly reduce emission of air pollutants. One way is through thermal modernization. The article presents the expected energy and environmental effects of measures which adjust the existing residential buildings to the requirements in force in Poland since 2021. It has been assumed that the energy demand for heating buildings will be limited to the level of 55 kWh/(m2year) for multi-family residential buildings and 60 kWh/(m2year) for single-family residential buildings. The calculations show that it is possible to reduce energy consumption for heating of residential buildings by over 70%, which will result in a reduction of the total air pollutant emissions from housing heating, in relation to the situation in 2011. The article indicates existing reserves in thermal modernization activities and related problems based on the analysis of selected parameters of residential buildings.


Sign in / Sign up

Export Citation Format

Share Document