The Evaluation of Air Pollutant Emission Reduction Effect of Port Handling and Distributing Facilities

2014 ◽  
Vol 1073-1076 ◽  
pp. 2719-2727
Author(s):  
Bing Qiao ◽  
Yi Chao Liu ◽  
Wei Jian He ◽  
Yu Jun Tian ◽  
Yue Li ◽  
...  

Based on methods of the fuel consumption, statistical and analogy analysis, the throughput amount method was established to calculate the emissions from port handling, and the minimum mileage method was established to estimate emissions from port cargo highway distributing. In the methods, some coefficients were used obtained by investigations: the current container handling emission factors of NOx, VOCs, CO, PM2.5 and SOx are 1.64, 0.21, 0.42, 0.01 and 0.29 t/TEU; the energy consumption of the unit throughput is 4.12 tons of standard coal per 104tons; the ratios of the unit non container cargoe handling energy consumption for coastal and inland river ports to those of container cargo are 0.631 and 0.405; the ratio of the unit non container cargoe highway distributing energy consumption to those of container cargo is 0.365. The calculation results show that the total emissions from the cargo handling and highway distributing of 2013 in China for NOx, VOCs, CO, PM2.5 and SOx are 54.365, 14.821, 24.631, 5.599 and 16.802 104tons, and the emissions from highway distributing are 4.21, 10.02, 8.24, 8.22 and 8.19 times of the emissions from port handling facilities. According to energy saving and emission reduction measures, formulas were established to calculate air pollutant emissions after the new added measures. Analyzing the real performance of the measures implemented since 2001 and predicting its trend of development, a scenario was designed, in which the Chinese port throughput continuously rises while the energy saving and emission reduction efforts gradually increase by 2020: the popularities of the energy saving measure of "oil changing to electricity" and the clean fuel measure of "oil changing to gas" reach 100% and 83%; the proportion of power plants with 95% desulfurization and denitrification reaches 100%; the energy saving and emission reduction efficiency of port cargo distributing optimization measures reaches 40%. Under this scenario, the prediction shows that during the port throughput increasing approximately 4.2 times from 2005 to 2020, the air pollutant emissions will be reduced significantly, returning to a lower level compared with 2005. The above methods and results can be used to support the decision-making and the implementation of emission reduction measures for the national, regional and port enterprises.

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 852
Author(s):  
Yue Yu ◽  
Zhi-xin Jin ◽  
Ji-zu Li ◽  
Yu-cheng Wu ◽  
Li Jia

In China, as the major source of energy consumption and air pollutant emissions, the power industry is not only the principal force that bears the responsibility of national emission reduction targets but also a breakthrough that reflects the effectiveness of emission reduction. In this study, based on the integrated MARKAL-EFOM system (TIMES) model and scenario analysis method, a bottom-up energy system optimization model for the power industry was established, and four scenarios with different constraints were set up to predict and analyze the power demand and the energy consumption structure. Emission characteristics, emission reduction characteristics, and emission reduction cost of sulfur dioxide (SO2), nitrogen oxide (NOX), particulate matter 2.5 (PM2.5), and mercury (Hg) were quantitatively studied. Finally, for the environmentally friendly development and optimal adjustment of power production systems in China, the control path in the power industry that is conducive to the emission reduction of air pollutants was obtained, which is of great significance for the ultimate realization of climate friendliness. The results demonstrate that from 2020 to 2050, the power demand of the terminal departments will increase, with the composition significantly changed. The focus of power demand will change from industry to the service industry gradually. If no additional targeted emission reduction or adjustment policies are added in the power industry, the primary energy and air pollutant emissions will increase significantly, putting great pressure on resources and the environment. For the emission reduction of air pollutants, the promotion effect of emission reduction measures, such as the implementation and promotion of non-fossil fuels, is restricted. The power industry can introduce and maximize the best available technologies while optimizing the structure of energy consumption to realize efficient emission reduction of air pollutants and energy conservation. In 2030, emissions will reach peak values with reasonable emission reduction cost. This has the additional effect of abating energy consumption and preventing deterioration of the ecological environment, which is of profound significance for the ultimate realization of climate friendliness.


2017 ◽  
Author(s):  
Lei Zhang ◽  
Tianliang Zhao ◽  
Sunling Gong ◽  
Shaofei Kong ◽  
Lili Tang ◽  
...  

Abstract. Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting Model with Chemistry (WRF-Chem), two simulations were executed to assess the atmospheric environmental change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that (1) compared to the power emissions of MEIC, PM2.5, PM10, SO2 and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs were higher in the UEIPP, reflecting a large discrepancy in the power emissions over East China; (2) In accordance with the changes of UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC and CO, whose concentrations in atmosphere are highly dependent on emission changes. (3) Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced, reflecting by increased oxidizing agents, e.g. O3 and OH, thus directly strengthened the chemical production from SO2 and NOx to sulfate and nitrate, which offset the reduction of primary PM2.5 emissions especially in the haze days. This study indicated the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with the implications on air quality and environmental changes.


2011 ◽  
Vol 281 ◽  
pp. 211-214
Author(s):  
He Rui Cui ◽  
Lu Chen ◽  
Da Fang Qiu

Thermal power industry promotes economic development in a high speed, and it also brings the problem of resources and the environment. Building the evaluation index system of the thermal power plants’ ability of energy saving and emission reduction, we made use of the analytic hierarchy process to determine the weight. And the fuzzy comprehensive evaluation was applied to a thermal power plant in Shandong Province. We obtain following conclusion: the primer factor which confines its ability of energy conservation and emission reduction is pollutant emission. On this basis, we put forward the specific implementation measures from fiscal policy, tax policy and monetary policy, aim is to accelerate the development of China’s energy saving and emission reduction.


2014 ◽  
Vol 525 ◽  
pp. 355-360
Author(s):  
Wei Zheng Kong ◽  
Bi Bin Huang ◽  
Qiong Hui Li ◽  
Xiao Lu Wang

In this paper, the change of fossil energy consumption, carbon dioxide (CO2) and pollutant emissions are calculated when petroleum based vehicles (PBVs) are taken place by EVs based upon the full-cycle energy efficiency theory with the energy efficiency measured from well to wheel.. Calculation results show that the fossil energy consumption, CO2, monoxide (CO) and hydrocarbon (HC) emissions can be reduced with the substitution of EVs for vehicles that burn gasoline (GVs), but nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions increase. When vehicles that burn diesel (DVs) are replaced by EVs, the emissions of pollutants except SO2 will be reduced, but the emissions of CO2 and SO2 will increase. Considering the proportion of coal-fired power generation to the total power generation in China, the goal of energy conservation and emission reduction cannot be perfectly achieved by the substitution of PBVs by EVs. Therefore, the proportion of clean energy generation should be increased in China and technological updating of coal-fired power plants for reducing CO2 and pollutant emissions are necessary as well. Besides, GVs, other than DVs, should be replaced by EVs from the perspective of energy conservation and CO2 emission.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Chaohui Wang ◽  
Qian Chen ◽  
Qiang Joshua Li ◽  
Xiaolong Sun ◽  
Zhenxia Li

This study presents a comprehensive pollutant reduction rating system for hot mix asphalt (HMA) with three Level I indices and ten Level II indices, covering various aspects in HMA pollutant emissions, energy consumption, and exhausts from construction equipment. The pollutant emission reduction effects are investigated not only in the laboratory for modified asphalt mixtures with various mixture gradation and binder types but also in the field for several warm mix asphalt (WMA) projects. Furthermore, energy consumption and emission data during pavement construction are obtained from 58 in situ highway projects in 10 provinces of China. Based on the hierarchical clustering method and Bayesian discriminant analysis, individual ranking systems are developed to quantify pollutant emission reduction effects and energy consumption. Subsequently, a comprehensive reduction rating system is established based on the analytic hierarchy process and approximation methods. A case study is demonstrated to implement the proposed system for the assessment of emission reduction effects.


2021 ◽  
Vol 13 (12) ◽  
pp. 6785
Author(s):  
Bing Wang ◽  
Yifan Wang ◽  
Yuqing Zhao

Since entering the industrialized era, China’s greenhouse gas emissions and air pollutant emissions have increased rapidly. China is the country with the most greenhouse gas emissions, and it is also facing serious local air pollution problems. China’s industrial sector is the largest contributor to CO2 and air pollutants. The resulting climate change and air pollution issues have caused China to face double pressures. This article uses the CO2 and comprehensive air pollutant emission data of China’s industrial sector as a starting point and uses econometric research methods to explore the synergy between China’s industrial carbon emission reduction and industrial comprehensive air pollutant emission reduction. The synergistic effect between industrial carbon emissions and industrial comprehensive air pollutant emissions has been quantified, and the transmission path of the synergistic effect has been explored. The empirical results show that there are benefits of synergistic governance between climate change and air pollution in China’s industrial sector. Every 1000 tons of carbon reduction in the industrial sector will result in 1 ton of comprehensive air pollutant reduction. The increase in R&D expenditure in the energy and power sector can significantly promote the reduction of air pollutants in the industrial sector. Increasing the intensity of environmental regulations is the main expansion path for synergy. However, in eastern, central, and western China, the synergy is not the same. Therefore, it is necessary to formulate regionally differentiated emission reduction policies. The research conclusions of this article can provide policy references for the coordinated governance of climate change and air pollution in China.


Author(s):  
Mingliang Bai ◽  
Wenjiang Yang ◽  
Dongbin Song ◽  
Marek Kosuda ◽  
Stanislav Szabo ◽  
...  

The rapid development of industry results in large energy consumption and a negative impact on the environment. Pollution of the environment caused by conventional energy sources such as petrol leads to increased demand for propulsion systems with higher efficiency and capable of energy-saving and emission reduction. The usage of hybrid technology is expected to improve energy conversion efficiency, reduce energy consumption and environmental pollution. In this paper, the simulation platform for the hybrid unmanned aerial vehicle (UAV) has been built by establishing the subsystem models of the UAV power system. Under the two chosen working conditions, the conventional cruise flight mission and the terrain tracking mission, the power tracking control and Q-Learning method have been used to design the energy management controller for the hybrid UAV. The fuel consumption and pollutant emissions under each working condition were calculated. The results show that the hybrid system can improve the efficiency of the UAV system, reduce the fuel consumption of the UAV, and so reduce the emissions of CO2, NOx, and other pollutants. This contributes to improving of environmental quality, energy-saving, and emission reduction, thereby contributing to the sustainable development of aviation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gengyu Gao ◽  
Shanshan Wang ◽  
Ruoyu Xue ◽  
Donghui Liu ◽  
He Ren ◽  
...  

AbstractIndustrial parks contribute greatly to China’s economic development while emitting huge air pollutants. It is necessary to study the characteristics of air pollutant emissions in industrial parks. In this study, emission inventories for 11 industrial parks were established. Meanwhile, the source emission and spatial distribution characteristics of the industrial park were analyzed. The cluster analysis was used to classify these parks into “4Hs”, “Mixed” and “4Ls” parks. “4Hs”, “Mixed” and “4Ls” represent that the levels of energy intensity, economic proportion of energy-intensive industries, coal proportion and pollution performance value are high, medium and low in turn. Then three emission reduction measures were set up to estimate the emission reduction potential and environmental impacts. The results show that: (1) the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs and NH3 of 11 industrial parks in 2017 were 11.2, 23.1, 30.8, 8.3, 3.5, 5.1, and 1.1 kt, respectively. (2) Power plants were the largest source of SO2 and NOx emissions, and industrial processes were the largest emission source of CO, PM10, PM2.5, VOCs and NH3. (3) “4Hs” parks with traditional energy-intensive industries as the leading industries should be the emphasis of air pollutant emission reduction. (4) Through the optimal emission reduction measures, SO2, NOx, PM10, PM2.5 and VOCs were reduced by 81, 46, 51, 46 and 77%, respectively. Environmental impact reductions include 1.6 kt SO2eq acidified gas emissions, 1.4 kt PO43−eq eutrophication substances, 4.2 kt PM10eq atmospheric particulate emissions, 7.0 kt 1,4-DCEeq human toxic substances, and 5.2 kt PM2.5 eq breathing Inorganic. This study is helpful to understand the characteristics of air pollutants emissions in industrial parks and promotes the proposal and implementation of air pollutant emissions reduction strategies.


Author(s):  
Xiliang Hong ◽  
Jianhong Chen ◽  
Deren Sheng ◽  
Wei Li

Owing to the growing environmental concerns, super-critical and ultra-supercritical coal-fired power plants dominate the electricity generation with the demand of near-zero air pollutant emission in China. Therefore, it is highly expected to assess the environmental impact and optimize the design at global and local levels. Exergoenvironmental analysis is a valid approach to investigate the formation of environmental impacts (EIs) associated with energy conversion systems at the component level. It generates information crucial for designing systems with a lower overall environmental impact, based on life cycle assessment (LCA) and exergy analysis. A 600 MW supercritical coal-fired system with and without dust, SO2 and NOx mitigation controls was analyzed. Heat transfer in the boiler, condenser (CND), low pressure cylinder (LP), air preheater (APH) show high potential to decrease the environmental impact due to high exergy destructions. The deaerator (DEA), induced draft fan (IDF), forced draft fan (FDF) should be focussed on construction design and manufacturing optimization. Purification units reveal high benefit for reducing EI produced by coal combustion, but there is a large space for the EI saving for it. The specific EI of electricity in China is much greater than European.


Sign in / Sign up

Export Citation Format

Share Document