Field Measurements of Small Marine Craft Gaseous Emission Factors during NEAQS 2004 and TexAQS 2006

2009 ◽  
Vol 43 (21) ◽  
pp. 8213-8219 ◽  
Author(s):  
Brian M. Lerner ◽  
Paul C. Murphy ◽  
Eric J. Williams
2004 ◽  
Vol 18 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xunhua Zheng ◽  
Shenghui Han ◽  
Yao Huang ◽  
Yuesi Wang ◽  
Mingxing Wang

2004 ◽  
Vol 35 ◽  
pp. S853-S854
Author(s):  
R. GEHRIG ◽  
M. HILL ◽  
B. BUCHMANN ◽  
D. IMHOF ◽  
E. WEINGARTNER ◽  
...  

Climate ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 74
Author(s):  
Thi Bach Thuong Vo ◽  
Reiner Wassmann ◽  
Van Trinh Mai ◽  
Duong Quynh Vu ◽  
Thi Phuong Loan Bui ◽  
...  

Rice production is a significant source of greenhouse gas (GHG) emissions in the national budget of many Asian countries, but the extent of emissions varies strongly across agro-environmental zones. It is important to understand these differences in order to improve the national GHG inventory and effectively target mitigation options. This study presents a meta-analysis of CH4 database emission factors (EFs) from 36 field sites across the rice growing areas of Vietnam and covering 73 cropping seasons. The EFs were developed from field measurements using the closed chamber technique. The analysis for calculating baseline EFs in North, Central and South Vietnam in line with the Intergovernmental Panel on Climate Change (IPCC) Tier 2 methodology was specified for the three cropping seasons being early-(E), mid-(M) and late-year (L) seasons. Calculated average CH4 EFs are given in kg ha−1 d−1 and reflect the distinct seasons in North (E: 2.21; L: 3.89), Central (E: 2.84; M+L: 3.13) and South Vietnam (E: 1.72; M: 2.80; L: 3.58). Derived from the available data of the edapho-hydrological zones of the Mekong River Delta, season-based EFs are more useful than zone-based EFs. In totality, these average EFs indicate an enormous variability of GHG emissions in Vietnamese rice production and represent much higher values than the IPCC default. Seasonal EFs from Vietnam exceeded IPCC defaults given for Southeast Asia corresponding to 160% (E), 240% (M) and 290% (L) of the medium value, respectively.


2011 ◽  
Vol 11 (23) ◽  
pp. 12197-12216 ◽  
Author(s):  
I. R. Burling ◽  
R. J. Yokelson ◽  
S. K. Akagi ◽  
S. P. Urbanski ◽  
C. E. Wold ◽  
...  

Abstract. We have measured emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.


2015 ◽  
Vol 15 (8) ◽  
pp. 4317-4337 ◽  
Author(s):  
Y. Zhao ◽  
H. Zhong ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. China's anthropogenic emissions of atmospheric mercury (Hg) are effectively constrained by national air pollution control and energy efficiency policies. In this study, improved methods, based on available data from domestic field measurements, are developed to quantify the benefits of Hg abatement by various emission control measures. Those measures include increased use of (1) flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems in power generation; (2) precalciner kilns with fabric filters (FF) in cement production; (3) mechanized coking ovens with electrostatic precipitators (ESP) in iron and steel production; and (4) advanced production technologies in nonferrous metal smelting. Investigation reveals declining trends in emission factors for each of these sources, which together drive a much slower growth of total Hg emissions than the growth of China's energy consumption and economy, from 679 metric tons (t) in 2005 to 750 t in 2012. In particular, estimated emissions from the above-mentioned four source types declined 3% from 2005 to 2012, which can be attributed to expanded deployment of technologies with higher energy efficiencies and air pollutant removal rates. Emissions from other anthropogenic sources are estimated to increase by 22% during the period. The species shares of total Hg emissions have been stable in recent years, with mass fractions of around 55, 39, and 6% for gaseous elemental Hg (Hg0), reactive gaseous mercury (Hg2+), and particle-bound mercury (Hgp), respectively. The higher estimate of total Hg emissions than previous inventories is supported by limited simulation of atmospheric chemistry and transport. With improved implementation of emission controls and energy saving, a 23% reduction in annual Hg emissions from 2012 to 2030, to below 600 t, is expected at the most. While growth in Hg emissions has been gradually constrained, uncertainties quantified by Monte Carlo simulation for recent years have increased, particularly for the power sector and particular industrial sources. The uncertainty (expressed as 95% confidence intervals) of Hg emissions from coal-fired power plants, for example, increased from −48–+73% in 2005 to −50–+89% in 2012. This is attributed mainly to increased penetration of advanced manufacturing and pollutant control technologies; the unclear operational status and relatively small sample sizes of field measurements of those processes have resulted in lower but highly varied emission factors. To reduce uncertainty and further confirm the benefits of pollution control and energy polices, therefore, systematic investigation of specific Hg pollution sources is recommended. The variability of temporal trends and spatial distributions of Hg emissions needs to be better tracked during the ongoing dramatic changes in China's economy, energy use, and air pollution status.


2011 ◽  
Vol 11 (6) ◽  
pp. 18677-18727 ◽  
Author(s):  
I. R. Burling ◽  
R. J. Yokelson ◽  
S. K. Akagi ◽  
S. P. Urbanski ◽  
C. E. Wold ◽  
...  

Abstract. We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.


Sign in / Sign up

Export Citation Format

Share Document