Heterometallic MIIRuIII2Compounds Constructed fromtrans-[Ru(Salen)(CN)2]-andtrans-[Ru(Acac)2(CN)2]-. Synthesis, Structures, Magnetic Properties, and Density Functional Theoretical Study

2005 ◽  
Vol 44 (19) ◽  
pp. 6579-6590 ◽  
Author(s):  
Wai-Fun Yeung ◽  
Pui-Ha Lau ◽  
Tai-Chu Lau ◽  
Hai-Yan Wei ◽  
Hao-Ling Sun ◽  
...  
2011 ◽  
Vol 217-218 ◽  
pp. 924-929
Author(s):  
Jin Hong Xue ◽  
Jing Chao Chen ◽  
Jie Yu ◽  
Jing Feng ◽  
Yong Pan ◽  
...  

Ca3Ru2O7 is new tpye of thermoelectric materials.A theoretical study is presented for the stability, electronic and magnetic properties of three phases of this new thermoelectric materials in the framework of density functional theory (DFT). The calculated cohesive energy is -7.94eV/unit. AFM2 are less stable than other pahses. Electronic calculations indicate that Ca3Ru2O7 is metallic in nature. The covalent bonds in these structures are due to orbital overlap between p bands of O and d bands of Ru, and DOS at Fermi level are dominated by d bands of Ru. FM phase have obvious magnetic moments.


2015 ◽  
Vol 645-646 ◽  
pp. 40-44 ◽  
Author(s):  
Qing Xiao Zhou ◽  
Zhi Bing Fu ◽  
Chao Yang Wang ◽  
Xi Yang ◽  
Lei Yuan ◽  
...  

The electronic and magnetic properties of graphene functionalized by 4f-orbital RE-metal atoms (Ce, Nd, Sm and Eu) were investigated by the density functional theory (DFT) calculations. The results of binding energy and geometry parameters showed that the hollow site, the center of a carbon hexagon, was the most stable adsorption structure. Furthermore, the PDOS results suggested that the electronic hybridization between the RE-adatoms and C atoms was mainly contributed by the 5d orbitals, whereas the 4f-orbital of the metal adatoms dominated the net magnetic moments of the systems significantly.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18371-18380
Author(s):  
Erik Bhekti Yutomo ◽  
Fatimah Arofiati Noor ◽  
Toto Winata

The number of dopant atoms is a parameter that can effectively tune the electronic and magnetic properties of graphitic and pyridinic N-doped graphene.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4466
Author(s):  
Duichun Li ◽  
Bin Xing ◽  
Baojun Wang ◽  
Ruifeng Li

Systematic periodic density functional theory computations including dispersion correction (DFT-D) were carried out to determine the preferred location site of Zr atoms in sodalite (SOD) and CHA-type topology frameworks, including alumino-phosphate-34 (AlPO-34) and silico-alumino-phosphate-34 (SAPO-34), and to determine the relative stability and Brönsted acidity of Zr-substituted forms of SOD, AlPO-34, and SAPO-34. Mono and multiple Zr atom substitutions were considered. The Zr substitution causes obvious structural distortion because of the larger atomic radius of Zr than that of Si, however, Zr-substituted forms of zeolites are found to be more stable than pristine zeolites. Our results demonstrate that in the most stable configurations, the preferred favorable substitutions of Zr in substituted SOD have Zr located at the neighboring sites of the Al-substituted site. However, in the AlPO-34 and SAPO-34 frameworks, the Zr atoms are more easily distributed in a dispersed form, rather than being centralized. Brönsted acidity of substituted zeolites strongly depends on Zr content. For SOD, substitution of Zr atoms reduces Brönsted acidity. However, for Zr-substituted forms of AlPO-34 and SAPO-34, Brönsted acidity of the Zr-O(H)-Al acid sites are, at first, reduced and, then, the presence of Zr atoms substantially increased Brönsted acidity of the Zr-O(H)-Al acid site. The results in the SAPO-34-Zr indicate that more Zr atoms substantially increase Brönsted acidity of the Si-O(H)-Al acid site. It is suggested that substituted heteroatoms play an important role in regulating and controlling structural stability and Brönsted acidity of zeolites.


2016 ◽  
Vol 34 (4) ◽  
pp. 905-915 ◽  
Author(s):  
M. Rahmoune ◽  
A. Chahed ◽  
A. Amar ◽  
H. Rozale ◽  
A. Lakdja ◽  
...  

AbstractIn this work, first-principles calculations of the structural, electronic and magnetic properties of Heusler alloys CoMnYAl, CoMnYGa and CoMnYIn are presented. The full potential linearized augmented plane waves (FP-LAPW) method based on the density functional theory (DFT) has been applied. The structural results showed that CoMnYZ (Z = Al, Ga, In) compounds in the stable structure of type 1+FM were true half-metallic (HM) ferromagnets. The minority (half-metallic) band gaps were found to be 0.51 (0.158), 0.59 (0.294), and 0.54 (0.195) eV for Z = Al, Ga, and In, respectively. The characteristics of energy bands and origin of minority band gaps were also studied. In addition, the effect of volumetric and tetragonal strain on HM character was studied. We also investigated the structural, electronic and magnetic properties of the doped Heusler alloys CoMnYGa1−xAlx, CoMnYAl1−xInx and CoMnYGa1−xInx (x = 0, 0.25, 0.5, 0.75, 1). The composition dependence of the lattice parameters obeys Vegard’s law. All alloy compositions exhibit HM ferromagnetic behavior with a high Curie temperature (TC).


Sign in / Sign up

Export Citation Format

Share Document