Crystalline-State Guest-Exchange and Gas-Adsorption Phenomenon for a “Soft” Supramolecular Porous Framework Stacking by a Rigid Linear Coordination Polymer

2008 ◽  
Vol 47 (12) ◽  
pp. 5218-5224 ◽  
Author(s):  
Sheng Hu ◽  
Kun-Huan He ◽  
Ming-Hua Zeng ◽  
Hua-Hong Zou ◽  
Yi-Min Jiang
Author(s):  
Francesca P. A. Fabbiani

High pressure has become an indispensable research tool in the quest for novel functional materials. High-pressure crystallographic studies on non-porous, framework materials based on coordination compounds are markedly on the rise, enabling the unravelling of structural phenomena and taking us a step closer to the derivation of structure–property relationships.


2018 ◽  
Vol 73 (6) ◽  
pp. 369-375 ◽  
Author(s):  
Farzin Marandi ◽  
Keyvan Moeini ◽  
Fereshteh Alizadeh ◽  
Zahra Mardani ◽  
Ching Kheng Quah ◽  
...  

AbstractA mixed ligand zinc coordination polymer, {Zn(μ-DPE)(DBM)2}n (1) (HDBM: dibenzoylmethane and DPE: (E)-1,2-di(pyridin-4-yl)ethene), was prepared and identified by elemental analysis, FT-IR, 1H NMR spectroscopy and single-crystal X-ray diffraction. In the 1D linear coordination polymer of 1, the zinc atom has a ZnN2O4 environment with octahedral geometry. These complex units are linked by the bridging of the planar N2 donor DPE ligands. In the coordination network of complex 1, in addition to the hydrogen bonds, the network is more stabilized by π–π stacking interactions between pyridine and β-diketone moieties of the ligands. These interactions increase the ability of the compound to interact with biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) as investigated by docking calculations.


2020 ◽  
Vol 41 (18) ◽  
pp. 2000366
Author(s):  
Reece W. Lewis ◽  
Nino Malic ◽  
Kei Saito ◽  
Neil R. Cameron ◽  
Richard A. Evans

2013 ◽  
Vol 66 (4) ◽  
pp. 464 ◽  
Author(s):  
Keisuke Kishida ◽  
Satoshi Horike ◽  
Kanokwan Kongpatpanich ◽  
Susumu Kitagawa

Porous coordination polymer compounds consisting of Zn2+, 1,2-di(4-pyridyl)ethane, and dicarboxylates were synthesised and their crystal structures were determined. These are doubly interpenetrated 2D layer structures, and the flexibility of porous structures is dependent on the substituent group of the dicarboxylate. From gas adsorption studies, distinct adsorption isotherms were observed for CO2, CH4, C2H4, and C2H6 at 195 K and 273 K, respectively.


2014 ◽  
Vol 67 (10) ◽  
pp. 1391 ◽  
Author(s):  
Jin-Xiang Chen ◽  
Ni-Ni Ding ◽  
Ming Chen ◽  
Wen-Hua Chen ◽  
David J. Young ◽  
...  

We herein report a Cd-based coordination polymer containing three integrated polymeric components: two neutral and entangled two-dimensional (6,3) nets and one zwitterionic one-dimensional polymer with corner-sharing double-stranded chains propagating along the c-direction to lock the consecutive ligand struts of the (6,3) nets. Despite a sophisticated entanglement, this coordination polymer is porous to selectively adsorb CO2.


2001 ◽  
Vol 58 (1) ◽  
pp. 78-93 ◽  
Author(s):  
Choudhury M. Zakaria ◽  
George Ferguson ◽  
Alan J. Lough ◽  
Christopher Glidewell

In the complexes [Ni(cyclam)(OCOR)2] (cyclam = 1,4,8,11-tetraazacyclotetradecane), where (RCOO)− is 2-naphtho-ate [bis-(2-naphthoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (I), monoclinic P21/c, Z′ = 0.5], 3,5-dinitrobenzoate [bis-(3,5-dinitrobenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (II), triclinic P\bar 1, Z′ = 0.5], 4-nitrobenzoate [bis-(4-nitrobenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (III), monoclinic P21/n, Z′ = 0.5], 3-hydroxybenzoate [bis-(3-hydroxybenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (IV), monoclinic P21/c, Z′ = 0.5] and 4-aminobenzo-ate [bis-(4-aminobenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (V), monoclinic C2/c, Z′ = 0.5], the Ni lies on a centre of inversion with monodentate carboxylato ligands occupying trans sites. Compound (I) consists of isolated molecules. In (II) and (III), N—H...O hydrogen bonds link the complexes into chains. Compounds (IV) and (III) form two- and three-dimensional structures generated entirely by hard hydrogen bonds. The 5-hydroxyisophthalate(2−) anion forms a hydrated complex, [Ni(cyclam)(5-hydroxyisophthalate)(H2O)]·4H2O {[aqua-(5-hydroxyisophthalato)-1,4,8,11-tetraazacyclotetradecanenickel(II)] tetrahydrate, (VI), monoclinic Cc, Z′ = 1}, in which the monodentate carboxylato ligand and a water molecule occupy trans sites at Ni: extensive hydrogen bonding links the molecular aggregates into a three-dimensional framework. The terephthalate(2−) anion forms a hydrated linear coordination polymer {catena-poly[terephthalato-1,4,8,11-tetraazacyclotetradecanenickel(II)] monohydrate, (VII), monoclinic C2/c, Z′ = 0.5}. In 1,2,4,5-benzenecarboxylate tris[1,4,8,11-tetraazacyclotetradecanenickel(II)] diperchlorate hydrate (VIII), [Ni(cyclam)]3·[1,2,4,5-benzenetetracarboxylate(4−)]·[ClO4]2·-[H2O]3, there are two distinct Ni sites: [Ni(cyclam)]2+ and centrosymmetric [C10H2O8]4− units form a two-dimensional coordination polymer, whose sheets are linked by centrosymmetric [Ni(cyclam)(H2O)2]2+ cations.


Sign in / Sign up

Export Citation Format

Share Document