scholarly journals Process Intensification of Reactive Distillation for the Synthesis ofn-Propyl Propionate: The Effects of Microwave Radiation on Molecular Separation and Esterification Reaction

2010 ◽  
Vol 49 (21) ◽  
pp. 10287-10296 ◽  
Author(s):  
Ernesto Altman ◽  
Georgios D. Stefanidis ◽  
Thomas van Gerven ◽  
Andrzej I. Stankiewicz
Author(s):  
Vivek D. Talnikar ◽  
Onkar A. Deorukhkar ◽  
Amit Katariya ◽  
Yogesh S. Mahajan

Abstract The reaction of acrylic acid and 2-ethyl-1 hexanol was explored in this work with the intent of process intensification. In order to assess the effect of important parameters on the course of reaction, this work initially conducted batch reactor experiments. Reaction conditions in the batch reactor for a specific conversion (~ 30 %) were obtained. A kinetic model was then obtained through regression to arrive at a rate expression that is later used in process development. Experiments were performed in the reactive distillation (RD) environment in batch mode, which showed substantial increase in conversion (~ 80 %) indicating the applicability of RD. Further, this work performed simulation in the RD environment to assess process intensification. Simulations show that it is possible to obtain complete conversion of the acid.


2020 ◽  
Vol 59 (45) ◽  
pp. 20155-20167
Author(s):  
Jiyan Liu ◽  
Linkun Gao ◽  
Junyao Ren ◽  
Wei Liu ◽  
Xinglong Liu ◽  
...  

2020 ◽  
pp. 0958305X2093768
Author(s):  
Alexandra-Elena Plesu Popescu ◽  
Jordi Bonet ◽  
Joan Llorens

Direct hydration of cyclohexene to produce cyclohexanol is the industrial process with a lower raw material cost but with a quite expensive process. Large energy consumption is consequence of large cyclohexene recycle related with its unfavourable chemical equilibrium. This study corroborates that the Asahi process is a good candidate for intensification avoiding the cyclohexene recycle. Rigorous simulation shows that a single reactive distillation column, with a side decanter, operated at total reflux, allows overcoming the chemical equilibrium limitations as the product is continuously collected by the column bottoms and the heat of reaction is directly used to separate the product by distillation. The novel process is studied and compared to the classical Asahi process. An energy comparison with the available processes proposed in the literature is performed. Therefore, achieving more energy-efficient processes leads to lowering their environmental impact, thus decreasing the carbon dioxide emissions. Applying the proposed methodology for cyclohexanol production, more than 67,000 t CO2/y emissions can be avoided compared to the nowadays used classical process, thus the potential savings applying process intensification to the chemical industry are very large and worth further investigation.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 46
Author(s):  
Raju. Kalakuntala ◽  
R Navya ◽  
T Sisira ◽  
V V. Basava Rao ◽  
Srinath. Surnani

Reactive distillation is a cost effective chemical engineering process intensification method which involves the reaction and separation simultaneously in a single unit. In the present work the system selected was Propionic acid and n-butanol which undergoes esterification reaction to form butyl propionate. Propionic acid is an important raw material from a biodegradable polymer. The experiments were done in both conventional batch distillation and reactive distillation. In conventional batch distillation no catalyst were used were as in reactive distillation amberlite catalyst used with various weight percentage. several experiments performed by varying the initial concentration(i.e. 0.1,0.2,0.4,0.6,0.8,0.99) of Propionic acid, mole ratios of Propionic acid & n-butanol(that is 1:1 ,1:1.5 ,1:2 And amberlite catalyst weight percent (i.e. 1,2 and 3).the conventional batch distillation and reactive distillation were compared. it is found that maximum conversion obtained in conventional distillation process is 81% and in reactive distillation is 95.1% at the optimum conditions are at initial concentration 0.6 ,mole ratio 1:2 And amberlite catalyst weight percentage 3 .And the recovery of water is more in reactive distillation as compared with the conventional batch distillation .So reactive distillation process is better than conventional distillation.  


Author(s):  
Abdulwahab Giwa ◽  
Saidat Olanipekun Giwa

This work has been carried out to demonstrate the application of a process simulator known as CHEMCAD to the modelling and the simulation of a reactive distillation process used for the production of n-butyl acetate, with water as the by-product, from the esterification reaction between acetic acid and n-butanol. The esterification reaction, which is generally an equilibrium type, was modelled as two kinetic reaction types in the reaction section of the column used, which had 17 stages with the middle section (stages 6 – 12) being the reaction section. A reflux ratio of 3 and reboiler duty of 78 kJ/min as well as 30 mL/min of each of the reactants with 99% molar purity were used for the simulation of the column. The results obtained revealed that the developed model was a valid one because there was a very good agreement between the results and the theoretical knowledge of a distillation column based on the fact that the desired (which was the heavy) product (n-butyl acetate) was found to have the highest mole fraction in the bottom section of the column while the by-product of the process (water) was discovered to have a mole fraction higher than that of n-butyl acetate in the top (condenser) section of the column. Therefore, CHEMCAD has been applied to the steady-state simulation of the reactive distillation process used for the production of n-butyl acetate from the esterification reaction of acetic acid and n-butanol successfully.


2017 ◽  
Vol 13 (3) ◽  
Author(s):  
Gaurav Kataria ◽  
Kailash Singh

Abstract For the real time monitoring of a Reactive Distillation Column (RDC), a Recurrent Neural Network (RNN) based soft sensor has been proposed to estimate the bottoms product composition of the RDC for the synthesis of n-Butyl Acetate using esterification reaction. This soft sensor acts as a measuring element in a closed loop involving a PI controller for the direct control of the RDC’s product concentration. The RNN acts as a dynamic network, which works on the sequential input data and output data with a recurrent connection. While using the RNN based soft sensor in the open loop, it has been observed that the sensor estimated the composition of butyl acetate in the bottoms with such an accuracy that it can be used for the control purpose. Closed loop results demonstrated that the system has been showing precise controlled results and soft sensor is showing small prediction Mean Square Error (MSE) when disturbances in feed flow rate and set point changes are introduced.


2019 ◽  
Vol 21 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Syed Sadiq Ali ◽  
Mohammad Asif ◽  
Avijit Basu

Abstract Biodiesel is a promising energy substitute of fossil fuels since it is produced from renewable and biodegradable sources. In the present work, reactive distillation (RD) process is designed and simulated using Aspen Plus process simulator to produce biodiesel of high purity through esterification reaction. The simultaneous reaction and separation in same unit enhances the biodiesel yield and composition in RD process. Two flowsheets are proposed in present work. In the first flowsheet, the unreacted methanol is recycled back to reactive distillation column. Biodiesel with 99.5 mol% purity is obtained in product stream while the byproduct stream comprises 95.2 mol% water, which has to be treated further. In the second flowsheet, a part of methanol recycle is split and purged. In this case, the biodiesel composition in product stream is 99.7 mol% whereas water composition is 99.9 mol% in byproduct stream, which can be reused for other process without treatment.


Sign in / Sign up

Export Citation Format

Share Document