A Review on Studies and Investigations on Process Intensification by Reactive Distillation

2019 ◽  
Author(s):  
Akash Deshmukh ◽  
Sunil Kulkarni ◽  
Kajal Shimpi ◽  
Jyoti Yadav
Author(s):  
Vivek D. Talnikar ◽  
Onkar A. Deorukhkar ◽  
Amit Katariya ◽  
Yogesh S. Mahajan

Abstract The reaction of acrylic acid and 2-ethyl-1 hexanol was explored in this work with the intent of process intensification. In order to assess the effect of important parameters on the course of reaction, this work initially conducted batch reactor experiments. Reaction conditions in the batch reactor for a specific conversion (~ 30 %) were obtained. A kinetic model was then obtained through regression to arrive at a rate expression that is later used in process development. Experiments were performed in the reactive distillation (RD) environment in batch mode, which showed substantial increase in conversion (~ 80 %) indicating the applicability of RD. Further, this work performed simulation in the RD environment to assess process intensification. Simulations show that it is possible to obtain complete conversion of the acid.


2020 ◽  
Vol 59 (45) ◽  
pp. 20155-20167
Author(s):  
Jiyan Liu ◽  
Linkun Gao ◽  
Junyao Ren ◽  
Wei Liu ◽  
Xinglong Liu ◽  
...  

2020 ◽  
pp. 0958305X2093768
Author(s):  
Alexandra-Elena Plesu Popescu ◽  
Jordi Bonet ◽  
Joan Llorens

Direct hydration of cyclohexene to produce cyclohexanol is the industrial process with a lower raw material cost but with a quite expensive process. Large energy consumption is consequence of large cyclohexene recycle related with its unfavourable chemical equilibrium. This study corroborates that the Asahi process is a good candidate for intensification avoiding the cyclohexene recycle. Rigorous simulation shows that a single reactive distillation column, with a side decanter, operated at total reflux, allows overcoming the chemical equilibrium limitations as the product is continuously collected by the column bottoms and the heat of reaction is directly used to separate the product by distillation. The novel process is studied and compared to the classical Asahi process. An energy comparison with the available processes proposed in the literature is performed. Therefore, achieving more energy-efficient processes leads to lowering their environmental impact, thus decreasing the carbon dioxide emissions. Applying the proposed methodology for cyclohexanol production, more than 67,000 t CO2/y emissions can be avoided compared to the nowadays used classical process, thus the potential savings applying process intensification to the chemical industry are very large and worth further investigation.


2021 ◽  
Vol 1 ◽  
pp. 82
Author(s):  
Peter Stipsitz ◽  
Michael Mandl ◽  
Michael Harasek

Background: Ethyl lactate is an environmentally benign solvent, which could substitute petrol-based volatile organic compounds (VOCs) in many applications if production costs are reduced. It is usually produced by the esterification of lactic acid with ethanol – two important chemical building blocks of biorefineries that are available at industrial scale. Reactive distillation is a promising alternative production process, which utilises process intensification to increase energy efficiency and space-time yield by enhancing the reaction kinetics. Methods: In this work, process intensification of ethyl lactate production by means of distillation was analysed with special focus on the efficient separation of water. Different setups were evaluated. The feedstock requirements were studied and the process was optimized regarding reaction kinetics in experiments on laboratory level. The preparation of anhydrous starting mixtures for ethyl lactate formation was tested in batch experiments and applied to reactive distillation. The simultaneous distillation was optimized and assessed for its energy efficiency. For this purpose, integrated reactive distillation was compared to a simple setup for distillation enhanced esterification. Results: It was found that an optimized serial setup of reactors and distillation steps can offer similar process intensification at a lower distillate rate compared to simultaneous reactive distillation and is therefore more energy efficient. Moreover, the serial setup is more flexible and straight-forward to regulate and scale-up. Conclusions: Based on the experimental results, the optimal setup and parameters of a continuous process for ethyl lactate production by distillation enhanced esterification was presented.


Sign in / Sign up

Export Citation Format

Share Document