Effects of Treating Materials and Outdoor Exposure upon Water Resistance and Tensile Strength of Cotton Duck.

1923 ◽  
Vol 15 (6) ◽  
pp. 607-610
Author(s):  
T. D. Jarrell ◽  
H. P. Holman
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Chen-chen Fan ◽  
Qian Tang

This paper aims to develop a modified animal glue sand binder for foundry casting with improved water resistance and bonding strength. An efficient method is reported by using sodium hydroxide as the catalyst to improve the operability of animal glue binder and allyl glycidyl ether as the modifier to improve the water resistance and bonding strength. Sand specimens prepared using allyl glycidyl ether-modified animal glue binder were cured by compressed air at room temperature. The proposed method saves energy and is environmentally friendly and inexpensive. Compared with unmodified animal glue binder, standard dog bone sand specimens with allyl glycidyl ether-modified animal glue binder had higher tensile strength of 2.58 MPa, flowability of 1.95 g, better water resistance (a lower decrease in tensile strength at 25 °C and relative humidity of 60%), and good collapsibility. This allyl glycidyl ether-modified animal glue binder is suitable for practical application in the foundry industry.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3236
Author(s):  
Peng Yin ◽  
Wen Zhou ◽  
Xin Zhang ◽  
Bin Guo ◽  
Panxin Li

In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), a novel reinforcement of dialdehyde lignocellulose (DLC) was prepared via the oxidation of lignocellulose (LC) using sodium periodate. Then, the DLC-reinforced TPS composites were prepared by an extrusion and injection process using glycerol as a plasticizer. The DLC and LC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of DLC content on the properties of the DLC/TPS composites were investigated via the evaluation of SEM images, mechanical properties, thermal stability, and contact angles. XRD showed that the crystallinity of the DLC decreased due to oxidation damage to the LC. SEM showed good dispersion of the DLC in the continuous TPS phase at low amounts of DLC, which related to good mechanical properties. The tensile strength of the DLC/TPS composite reached a maximum at a DLC content of 3 wt.%, while the elongation at break of the DLC/TPS composites increased with increasing DLC content. The DLC/TPS composites had better thermal stability than the neat TPS. As the DLC content increased, the water resistance first increased, then decreased. The highest tensile strength and elongation at break reached 5.26 MPa and 111.25%, respectively, and the highest contact angle was about 90.7°.


2011 ◽  
Vol 197-198 ◽  
pp. 1281-1284 ◽  
Author(s):  
Sui Lian Luo ◽  
Chao Dong Liu ◽  
Guo Fei Gong

In this paper three kind of water borne polyurethane are synthesized. FTIR identify the structure of 2-hydroxypropyl acrylate terminated water borne polyurethane with block PDMS. It is found that Si-WPUA has excellent water-resistance, good toughness, and good tensile strength. So, the work has been found the method which could improve water resistance and not decrease mechanical properties. It is hoped that the modified polyurethane could be used as coatings superior to the solvent-borne systems.


2012 ◽  
Vol 466-467 ◽  
pp. 137-140
Author(s):  
Jun Qin Liu ◽  
Feng Qing Zhao ◽  
Pei Xin Li ◽  
Qian Chen

The purpose of this work was to prepare a multi-function adhesive for reconstituted tobacco. With chitin as the main raw material, adding complex moisturizer, cross-linking agent and other additives, an adhesive for tobacco sheet was obtained. Factor design was used in the experiment for formulation optimization. The product possesses excellent viscosity, water resistance and tensile strength.


2020 ◽  
Vol 10 (1) ◽  
pp. 124-135
Author(s):  
A. Fedotov ◽  
Tat'yana Vahnina ◽  
Sergey Kotikov

Improving the production process of FSF waterproof plywood has been relevant since the beginning of its pro-duction. Only the criteria for improving the quality of plywood products are changing. At the present stage, the costs of improving the quality of plywood cannot be compensated by an increase in prices. Reduction in production costs is required. A rational way to improve operational properties is to reduce pressing temperature and introduce modifying additives that increase adhesive and cohesive strength of phenol-formaldehyde binder. The problem is that when press-ing temperature is reduced to 150 °C or lower, phenol-formaldehyde binder does not reach the resite stage. It negatively affects the strength and water resistance of FSF plywood. It was decided to use modifying additives in the adhesive composition to bind free methylol groups of the oligomer and increase the number of active sites in the curable phenolic binder network. The strength properties of FSF plywood with the use of nine modifying additives have been investigated. The consumption of modifiers varied in the range of 0.25-1.5% in increments of 0.25%. Pressing was carried out at a temperature of 120 °С. An improvement in the tensile strength of plywood when shearing on the adhesive layer was found to be 5-15% (in comparison with control samples without the addition of a modifier) when aqueous solutions of hexavalent aluminum chloride, anhydrous magnesium chloride, eight-zinc zinc sulfate, sulfosalicylic acid, dimethylglyoxime with a different proportion of additives were used as modifying additives to phenol-formaldehyde binder. Tensile strength under static bending of plywood is also increased when using modifiers with different proportion of additives


2018 ◽  
Vol 7 (1) ◽  
pp. 49-59
Author(s):  
Johan Budiman ◽  
Rodiana Nopianti ◽  
Shanti Dwita Lestari

This research studied the characteristics of bioplastic from large-leafed mangrove (Bruguiera gymnorrizha) starch. This research was arranged used Randomized Block Design (RBD) model, with different starch concentration (0.5%, 1%, 1.5% and 2%) as treatment. The parameters observed were mechanical properties (tensile strength and percent elongation), thickness, water uptake and biodegradation test. The result showed that the starch concentration was not significant, (P>0.05) affected tensile strength and water resistance. Different between treatments was observed as for elongation, thickness and biodegradation test significant (P<0.05). The results obtained from the bioplastic research of large-leafed mangrove starch for tensile strength ranged from 24.59 MPa – 32.91 MPa, percent elongation 2.93% – 4.88%, thickness 0.05 mm – 0,11 mm, water resistance 108.06% – 111.09% and biodegradation test with percent weight loss 17.91% – 54.40% with the highest degradation rate 18.13 – 3.62 mg /15 days burial. The best treatment was obtained by using 1,5% starch, 4 g chitosan and 15% glycerol or equal to starch : chitosan 1.5 g : 4 g and 0.9 mL glycerol.


2019 ◽  
Vol 7 (1) ◽  
pp. 77-85
Author(s):  
Dahlena Ariyani ◽  
Erni Puryati Ningsih ◽  
Sunardi Sunardi

Synthesis and characterization of bioplastics from Nagara sweet potatoes (Ipomoea batatas L) starch with carboxymethyl cellulose (CMC) as a filler has been conducted. The purpose of this study was to evaluate the effects of CMC addition on the characteristic of bioplastics from Nagara sweet potato (Ipomoea batatas L) starch. Bioplastic synthesis was carried out by the melt intercalation method with variations in the amount of CMC 0-30% (w/w). Bioplastics were analyzed using FTIR spectrophotometer, thickness, solubility, water resistance, water vapor transmission rate, tensile strength and elongation. The values of the tensile strength of the bioplastic produced increases with increasing of CMC. The results also showed that the optimum CMC concentration in bioplastics production is 9% (w/w) with a tensile strength value 0.5281 N/mm2.


Sign in / Sign up

Export Citation Format

Share Document