Adsorbed .omega.-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution

1991 ◽  
Vol 95 (2) ◽  
pp. 877-886 ◽  
Author(s):  
Cary Miller ◽  
Pierre Cuendet ◽  
Michael Graetzel
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aishwaryadev Banerjee ◽  
Shakir-Ul Haque Khan ◽  
Samuel Broadbent ◽  
Ashrafuzzaman Bulbul ◽  
Kyeong Heon Kim ◽  
...  

AbstractWe report the electrical detection of captured gases through measurement of the quantum tunneling characteristics of gas-mediated molecular junctions formed across nanogaps. The gas-sensing nanogap device consists of a pair of vertically stacked gold electrodes separated by an insulating 6 nm spacer (~1.5 nm of sputtered α-Si and ~4.5 nm ALD SiO2), which is notched ~10 nm into the stack between the gold electrodes. The exposed gold surface is functionalized with a self-assembled monolayer (SAM) of conjugated thiol linker molecules. When the device is exposed to a target gas (1,5-diaminopentane), the SAM layer electrostatically captures the target gas molecules, forming a molecular bridge across the nanogap. The gas capture lowers the barrier potential for electron tunneling across the notched edge region, from ~5 eV to ~0.9 eV and establishes additional conducting paths for charge transport between the gold electrodes, leading to a substantial decrease in junction resistance. We demonstrated an output resistance change of >108 times upon exposure to 80 ppm diamine target gas as well as ultralow standby power consumption of <15 pW, confirming electron tunneling through molecular bridges for ultralow-power gas sensing.


2008 ◽  
Vol 361 (4) ◽  
pp. 1095-1099 ◽  
Author(s):  
Keiko Yokoyama ◽  
Brian S. Leigh ◽  
Yuling Sheng ◽  
Katsumi Niki ◽  
Nobuhumi Nakamura ◽  
...  

Author(s):  
J. A. Panitz

Tunneling is a ubiquitous phenomenon. Alpha particle disintegration, the Stark effect, superconductivity in thin films, field-emission, and field-ionization are examples of electron tunneling phenomena. In the scanning tunneling microscope (STM) electron tunneling is used as an imaging modality. STM images of flat surfaces show structure at the atomic level. However, STM images of large biological species deposited onto flat surfaces are disappointing. For example, unstained virus particles imaged in the STM do not resemble their TEM counterparts.It is not clear how an STM image of a biological species is formed. Most biological species are large compared to the nominal electrode separation of ∼ 1nm that is required for electron tunneling. To form an image of a biological species, the tunneling electrodes must be separated by a distance that would normally be too large for a tunneling current to be observed.


Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


Sign in / Sign up

Export Citation Format

Share Document