UV-visible diffuse reflectance spectroscopic study of platinum, palladium, and ruthenium catalysts supported on silica

1991 ◽  
Vol 95 (4) ◽  
pp. 1690-1693 ◽  
Author(s):  
T. Lopez ◽  
M. Villa ◽  
R. Gomez
1988 ◽  
Vol 6 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Stephen F. Lincoln ◽  
Andrea M. Hounslow ◽  
John H. Coates ◽  
Rosa P. Villani ◽  
Robert L. Schiller

2005 ◽  
Vol 70 (8-9) ◽  
pp. 1105-1111 ◽  
Author(s):  
P. Prakash ◽  
Mary Francisca

A kinetic analysis of the reaction between peracetic acid (AcOOH), and tetrakis (pentafluorophenyl) - 21H, 23H-porphine iron(III) chloride Fe(F20TPP)Cl, in acetonitrile showed that the peracetic acid oxidatively destroys Fe(F20TPP)Cl. This is in contrast to an assumption that the oxidative degradation of metalloporphyrins can be prevented by the introduction of electron-withdrawing substituents into the phenyl groups of the porphyrin ligand. A UV-visible spectroscopic study showed a degree of macro cycle destruction of the tetrapyrrole conjucation of the metalloporphyrin. The degradation takes place via oxoperferryl species. The first step of the reaction mechanism is the reversible formation of an adduct ?X? (k1/k-1) between Fe(F20TPP)Cl and peracetic acid, followed by an irreversible step (k2) for the formation of oxoperferryl species.


2008 ◽  
Vol 56 (4) ◽  
pp. 615-624 ◽  
Author(s):  
Alexander A. Kamnev ◽  
Julia N. Sadovnikova ◽  
Petros A. Tarantilis ◽  
Moschos G. Polissiou ◽  
Lyudmila P. Antonyuk

2011 ◽  
Vol 364 ◽  
pp. 238-242 ◽  
Author(s):  
Kimi Melody ◽  
Yuliati Leny ◽  
Mustaffa Shamsuddin

A series of In0.1SnxZn0.85-2xS solid solutions was synthesized by hydrothermal method and employed as photocatalyst for photocatalytic hydrogen evolution under visible light irradiation. The structures, optical properties and morphologies of the solid solutions were studied by X-ray diffraction, diffuse reflectance UV–visible spectroscopy and field emission scanning electron microscopy. From the characterizations, it was confirmed that In0.1SnxZn0.85-2xS solid solution can be obtained and they have nanosized particles. The highest photocatalytic activity was observed on In0.1Sn0.03Zn0.79S photocatalyst, with average rate of hydrogen production 3.05 mmol/h, which was 1.2 times higher than the In0.1Zn0.85S photocatalyst.


2013 ◽  
Vol 543 ◽  
pp. 63-67
Author(s):  
Jayabharathi Jayaraman ◽  
Jayamoorthy Karunamoorthy

A sensitive benzimidazole derivative fluorescent sensor for nanoparticulate ZnO has been designed and synthesized. The nanocrystalline ZnO, Ag doped ZnO and Cu doped ZnO have been synthesised by sol-gel method and characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. The synthesized sensor emits fluorescence at 360 nm and this fluorescence is selectively enhanced by nanocrystalline ZnO. This technique is sensitive to detect and estimate ZnO at micro molar level. Impurities such as Ag and Cu do not hamper the sensitivity of this technique significantly. Keywords: Sensor, SEM, EDX, Impedance, Fluorescence


Sign in / Sign up

Export Citation Format

Share Document