Density Functional Theory Isotope Effects and Activation Energies for the Cope and Claisen Rearrangements

1994 ◽  
Vol 116 (22) ◽  
pp. 10336-10337 ◽  
Author(s):  
Olaf Wiest ◽  
Kersey A. Black ◽  
K. N. Houk
Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2803 ◽  
Author(s):  
Denis Chachkov ◽  
Rezeda Ismagilova ◽  
Yana Vereshchagina

The mechanism of reactions of silatranes and germatranes, and their bicyclic and monocyclic analogues with one molecule of methanol or ethanol, was studied at the Density Functional Theory (DFT) B3PW91/6-311++G(df,p) level of theory. Reactions of 1-substituted sil(germ)atranes, 2,2-disubstituted sil(germ)ocanes, and 1,1,1-trisubstituted hyposil(germ)atranes with alcohol (methanol, ethanol) proceed in one step through four-center transition states followed by the opening of a silicon or germanium skeleton and the formation of products. According to quantum chemical calculations, the activation energies and Gibbs energies of activation of reactions with methanol and ethanol are close, their values decrease in the series of atranes–ocanes–hypoatranes for interactions with both methanol and ethanol. The reactions of germanium-containing derivatives are characterized by lower activation energies in comparison with the reactions of corresponding silicon-containing compounds. The annular configurations of the product molecules with electronegative substituents are stabilized by the transannular N→X (X = Si, Ge) bond and different intramolecular hydrogen contacts with the participation of heteroatoms of substituents at the silicon or germanium.


2020 ◽  
pp. 1-8
Author(s):  
Richard J. Puddephatt

The mechanisms of formation, decomposition, and isomerisation of platinacyclobutane complexes [PtCl2(C3H6)L2] (L is typically pyridine) are discussed on the basis of density functional theory (DFT). The isomerisation and decomposition reactions occur through 5-coordinate intermediates [PtCl2(C3H6)L] that cannot be directly detected. These 5-coordinate complexes are predicted to have distorted square pyramidal structures, but a pinched trigonal bipyramidal (PTBP) stereochemistry is easily accessible. Both α- and β-elimination from these complexes to give hydride complexes [PtHCl2(C3H5)L] are predicted to have high activation energies. The isomerisation of [PtCl2(C3H6)L2] to the ylide complex [PtCl2{CH(L)CH2CH3)L] is instead predicted to occur after cleavage of a Pt–C bond to give an intermediate that can be considered as a corner platinated cyclopropane, leading to 1,3-hydrogen transfer without a hydridoplatinum intermediate. The reaction of [PtCl2{CH(L)CH2CH3}L] to give the alkene complex [PtCl2(CH2 = CHCH3)L] involves dissociation of the C–L bond followed by a 2,1-hydrogen transfer. The selectivity of related reactions from phenylcyclopropane follows naturally from these mechanisms.


2017 ◽  
Vol 72 (3) ◽  
pp. 193-200 ◽  
Author(s):  
Takao Oi ◽  
Ryota Mitome ◽  
Satoshi Yanase

AbstractH/D and 12C/13C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF3) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF3 monomer and CHF3 molecules surrounded by other CHF3 molecules in every direction in CHF3 clusters were used as model molecules of vapour and liquid CHF3. Although experimental results in which the vapour pressure of liquid 12CHF3 is higher than that of liquid 12CDF3 and the vapour pressure of liquid 13CHF3 is higher than that of liquid 12CHF3 between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the 12C/13C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and 12C/13C VPIEs.


1999 ◽  
Vol 77 (9) ◽  
pp. 1476-1491 ◽  
Author(s):  
Maricel Torrent ◽  
Liqun Deng ◽  
Miquel Duran ◽  
Miquel Solà ◽  
Tom Ziegler

The reaction between CrO2Cl2 and ethylene leading to the formation of epoxide and chlorohydrin precursors or directly to 1,2-dichloroethane has been studied by density functional theory. The formation of the epoxide precursor (Cl2(O)Cr-OC2H4) was found to take place via a [3+2] addition of ethylene to two Cr=O bonds followed by rearrangement of the five-membered diol to the epoxide product. The alternative mechanisms involving a direct addition of oxygen to ethylene or the [2+2] addition of the olefin to a Cr=O bond were found to have much higher activation energies. The formation of the chlorohydrin precursor (Cl(O)Cr-OCH2=CHCl) was found to take place via a [3+2] addition to one Cr—Cl and one Cr=O bond. Pathways involving initial [2+2] addition to a Cr—Cl or Cr=O bond had much higher activation barriers. The generation of 1,2-dichloroethane is highly unfavorable with an endothermicity of 44.7 kcal/mol and an even higher activation barrier. It is suggested that the formation of epoxide and chlorohydrin from the respective precursors requires the addition of H2O.Key words: reaction mechanisms, epoxide, oxidation of ethylene, chromyl chloride, DFT.


Sign in / Sign up

Export Citation Format

Share Document