The Hydrolysis of Methylo-Formylbenzoate. Participation of the Neighboring Aldehyde Group in the Hydroxide Ion and Morpholine-Catalyzed Reactions

1962 ◽  
Vol 84 (23) ◽  
pp. 4589-4590 ◽  
Author(s):  
Myron L. Bender ◽  
Marc S. Silver

2002 ◽  
Vol 80 (1) ◽  
pp. 82-88
Author(s):  
Y Chiang ◽  
A J Kresge ◽  
Q Meng

Rates of acid-catalyzed hydrolysis of 3-diazobenzofuran-2-one, measured in concentrated aqueous perchloric acid and hydrochloric acid solutions, were found to correlate well with the Cox–Yates Xo excess acidity function, giving kH+ = 1.66 × 10–4 M–1 s–1, m‡ = 0.86 and kH+ /kD+ = 2.04. The normal direction (kH/kD > 1) of this isotope effect indicates that hydrolysis occurs by rate-determining protonation of the substrate on its diazo-carbon atom. It was found previously that the next higher homolog of the present substrate, 4-diazoisochroman-3-one, also undergoes hydrolysis by this reaction mechanism but with a rate constant 15 times greater than that for the present substrate; this difference in reactivity can be understood in terms of the various resonance forms that contribute to the structures of these substrates. The product of the present hydrolysis reaction is 3-hydroxybenzofuran-2-one, which itself quickly undergoes subsequent acid-catalyzed hydrolysis to 2-hydroxymandelic acid. The acidity dependence of this subsequent hydrolysis is much shallower than that of the diazo compound precursor, and rates of reaction correlate as well with [H+] as with Xo. This is due in part to incursion of a nonproductive protonation on the hydroxy group of 3-hydroxy benzo furan-2-one that impedes hydrolysis and produces saturation of acid catalysis. Rates of hydrolysis of the hydroxy compound were also measured in dilute HClO4 and NaOH solutions as well as in CH3CO2H, H2PO4–, (CH2OH)3CNH3+, and NH4+ buffers, and the rate profile constructed from these data showed the presence of uncatalyzed and hydroxide ion-catalyzed reactions. This hydroxide-ion catalysis became saturated at [NaOH] [Formula: see text] 0.05 M, implying occurrence of yet another nonproductive substrate ionization. Key words: diazo compound hydrolysis, lactone hydrolysis, Cox–Yates excess acidity, acid catalysis, alcohol protonation.



1986 ◽  
Vol 51 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
M. Martín Herrera ◽  
J. J. Maraver Puig ◽  
F. Sánchez Burgos

A study is made on the kinetic salt effect on the reaction of hydrolysis of several charged esters in alkaline media. The results are interpreted on the basis of the coulombic interaction, the salting in of hydroxide ion and a third component depending on size of the substrate.



ChemInform ◽  
1990 ◽  
Vol 21 (25) ◽  
Author(s):  
T. J. PRZYSTAS ◽  
T. H. FIFE


1984 ◽  
Vol 30 (4) ◽  
pp. 534-537 ◽  
Author(s):  
J D Artiss ◽  
M W McGowan ◽  
D R Strandbergh ◽  
E Epstein ◽  
B Zak

Abstract We describe a procedure for the enzymic, colorimetric determination of phosphatidylglycerol in amniotic fluid. After extraction into chloroform:methanol (2:1 by vol) and evaporation, the phospholipid-containing residue is redissolved in a non-ionic detergent, which thus provides an aqueous sample. The subsequent enzymic reaction sequence involves phospholipase-catalyzed hydrolysis of glycerol from its phospholipid. Subsequent enzyme-catalyzed reactions phosphorylate this glycerol and oxidize the resulting glycerol phosphate to produce hydrogen peroxide, which is reacted to produce an intense red chromogen in the peroxidase-catalyzed coupling of 4-aminoantipyrine and 2-hydroxy-3,5-dichlorobenzenesulfonate. When used in conjunction with previously reported enzymic techniques for determination of lecithin and sphingomyelin, this procedure may provide an accurate and precise "lung profile" for assessment of fetal lung maturity.



RSC Advances ◽  
2016 ◽  
Vol 6 (92) ◽  
pp. 89234-89237 ◽  
Author(s):  
Xiaofei Qian ◽  
Jianwei Han ◽  
Limin Wang

Cascades of cyclic sulfonyimines mediated by tBuOK with diaryliodonium salts has been developed, giving the diaryl ethers in good yields.



1968 ◽  
Vol 21 (7) ◽  
pp. 1733 ◽  
Author(s):  
SF Lincoln ◽  
DR Stranks

The rates of hydrolysis of phosphato complexes of cobalt(111) in sodium hydroxide concentrations ranging from 0.02M to 0.37M, and at several ionic strengths, have been measured with a tracer technique. Bidentate phosphato complexes exhibit the same rates of hydrolysis as the corresponding monodentate complexes, due to a rapid conversion of the bidentate into the monodentate form. The general rate law for base hydrolysis of all the phosphato complexes is: d[PO34]/dt = {kH2O + kOH[OH-]}[complex] At 60� and at unit ionic strength, the rate constants for the complexes cis-[Co(NH3)4OH.PO4]-, cis-[Co en2OH.PO4]-, and [Co(NH3)5PO4] respectively are: 103kH2O (min-l) 85.0, 2.0, <1; and 103kOH (1. mole-1 min-l) 42.7, 12.0, 69.5. Mechanistic conclusions have been based on the measured enthalpies and entropies of activation and deuterium solvent isotope effects. For all complexes, kH2O is identified with an aquation mechanism involving synchronous interchange of the phosphate and solvent water between the first and second coordination spheres of the complexes. In the case of the tetrammine and bis(ethylenediamine) complexes, kOH is identified with a process involving synchronous interchange of phosphate and hydroxide ion between the first and second coordination spheres of the complexes. In the case of the pentammine complex, an SN2CB mechanism is considered to be more probable. A comparison with the base hydrolysis of halogen complexes of cobalt(111) is presented.



Sign in / Sign up

Export Citation Format

Share Document