Catalysis of Enantioselective [2+1]-Cycloaddition Reactions of Ethyl Diazoacetate and Terminal Acetylenes Using Mixed-Ligand Complexes of the Series Rh2(RCO2)n(L*4-n). Stereochemical Heuristics for Ligand Exchange and Catalyst Synthesis

2005 ◽  
Vol 127 (41) ◽  
pp. 14223-14230 ◽  
Author(s):  
Yan Lou ◽  
Travis P. Remarchuk ◽  
E. J. Corey

1982 ◽  
Vol 37 (5) ◽  
pp. 579-586 ◽  
Author(s):  
W. Preetz ◽  
G. Rimkus

The mixed chloro-bromo complexes [PtClnBr6-n]2-, n = 1-5, are separated by ion exchange chromatography on diethylaminoethylcellulose. The separation of corresponding stereoisomers for n = 2, 3, 4 is not possible. Due to the stronger trans-effect of Br compared with Cl, on treatment of [PtBrß]2- with Cl- in the presence of Br2 nearly pure cis-isomers, and by reaction of [PtClsBr]2- and cis-fPtC^Bro]2- with Br~/Br2 completely pure transisomers are formed. The stereoselectivity of the successive ligand exchange reactions is better than in corresponding series of Re, Os and Ir. The highly resolved vibrational spectra allow the distinction of the mixed ligand complexes as well as the estimation of purity of the isomers. All allowed stretching frequencies are observed and assigned according to point groups D4h, C4V, C3V and C2V. Especially in the ν(Pt-Br) region it is possible to distinguish bands arising either from symmetric Br-Pt-Br or asymmetric Cl-Pt-Br axes. The UV/VIS spectra exhibit systematic hypsochromic shifts on the successive exchange of Br-ligands by Cl. A critical discussion of the literature concerning chloro-bromo-platinates- (IV) shows the importance of effective separation processes for the isolation of pure mixed ligand complexes



1980 ◽  
Vol 33 (7) ◽  
pp. 1463 ◽  
Author(s):  
R Colton ◽  
D Dakternieks

Mercury(II) halide complexes of tris(4-methoxyphenyl)phosphine have been investigated by 31P and 199Hg n.m.r. spectroscopy of CH2Cl2 solutions. At room temperature the phosphine exchanges at an appreciable rate and halogen exchange is fast. At -50°C both phosphine and halogen exchange are slow on the n.m.r. time scale and halogen redistribution reactions are observed. ��� Mercury(II) halide complexes with tributylphosphine selenide have been investigated by 31P, 199Hg and 77Se n.m.r. methods. This ligand is labile and exchanges rapidly on the n.m.r. time scale at room temperature, although the exchange can be slowed down at about -100°C. Halogen exchange is also fast at room temperature. ��� Ligand exchange reactions between tributylphosphine and either tris(4-methoxyphenyl)phosphine or tributylphosphine selenide were investigated and redistribution reactions to give mixed ligand complexes were observed.



Author(s):  
Tahmeena Khan ◽  
Rumana Ahmad ◽  
Iqbal Azad ◽  
Saman Raza ◽  
Seema Joshi ◽  
...  

Background: Mixed ligand-metal complexes are efficient chelating agents because of flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance. Objective: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2-butanone thiosemicarbazone) and pyridine, bipyridine or 2-picoline as co-ligands were synthesized with Cu, Fe and Zn. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against S. aureus and E. coli. The drug character of the complexes was evaluated on several parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and absorption, distribution, metabolism, excretion and toxicity (ADMET) profile assessment using various automated softwares. Molecular docking of the complexes was also performed with two target proteins. Method and Results: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopies. Molecular docking was performed against ribonucleotide reductase (RR) and topoisomerase II (topo II). [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski’s rules. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. Not more than two violations were obtained in case of each filtering rule showing drug like character of the mixed ligand complexes. Several of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects. All the complexes were predicted to have no mutagenic character as shown by the Ames test [Zn(C5H11N3S)(py)2(SO4)] showed potential activity against MDA. [Co(C5H11N3S(bpy)(Cl)2] was also active against MDA. [Cu(C5H11N3S)(2-pic)2(CH3COO)2] also showed 27.6% cell viability at 100 µM against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. [Co(C5H11N3S)(bpy)(Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. [Co(C5H11N3S)(2-pic)2(Cl)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] were active at lower concentrations against S.aureus. Against E. coli, [Zn(C5H11N3S)(2-pic)2(SO4)] showed activity at 18-20mg dose range.



1985 ◽  
Vol 50 (6) ◽  
pp. 1383-1390
Author(s):  
Aref A. M. Aly ◽  
Ahmed A. Mohamed ◽  
Mahmoud A. Mousa ◽  
Mohamed El-Shabasy

The synthesis of the following mixed ligand complexes is reported: [Ni(phdtc)2(dpm)2], [Ni(phdtc)2(dpe)2], [Ni(phdtc)2(dpp)3], [Ni(1-naphdtc)2(dpm)2], [Ni(1-naphdtc)2], and [Ni(1-naphdtc)2(dpp)2], where phdtc = PhNHCSS-, 1-naphdtc = 1-NaPhNHCSS-, dpm = Ph2PCH2PPh2, dpe = Ph2P(CH2)2PPh2, and dpp = Ph2P(CH2)3PPh2. The complexes are characterised by microanalysis, IR and UV-Vis spectra, magnetic measurements, conductivity, X-ray powder diffraction, and thermal analysis. All the mixed ligand complexes are diamagnetic, and thus a square-planar or square-pyramidal (low-spin) structure was proposed for the present complexes.



2021 ◽  
Vol 19 (1) ◽  
pp. 735-744
Author(s):  
Samar O. Aljazzar

Abstract Metformin is one of the most effective drugs for the treatment of type II diabetes. Two new mixed ligand complexes of vanadyl(ii) and chromium(iii) ions with the general formula [VOL1L2]SO4 and [CrL1L2(Cl)2]Cl, respectively, where L1 is the metformin and L2 is the glycine amino acid, have been synthesized in MeOH solvent with 1:1:1 stoichiometry and characterized by several spectroscopic techniques. The spectroscopic data suggested that the [VOL1L2]SO4 complex possesses a square pyramidal geometry, where the [CrL1L2(Cl)2]Cl complex possesses an octahedral geometry. The L1 ligand coordinated to the VO(ii) and Cr(iii) ions via the N atoms of the imino (‒C═NH) groups, where the L2 ligand coordinated via the O atom of the carboxylate group (COO) and the N atom of the amino group (NH2). The interaction of ligands L1 and L2 with the metal ions leads to complexes that have organized nanoscale structures with a main diameter of ∼14 nm for the [CrL1L2(Cl)2]Cl complex and ∼40 nm for the [VOL1L2]SO4 complex.



2003 ◽  
Vol 101 (7) ◽  
pp. 977-981 ◽  
Author(s):  
S. LIS ◽  
Z. HNATEJKO ◽  
S. BUT ◽  
A. SZYCZEWSKI ◽  
M. ELBANOWSKI


Sign in / Sign up

Export Citation Format

Share Document