On the Nature of DNA Self-Assembled Monolayers on Au: Measuring Surface Heterogeneity with Electrochemical in Situ Fluorescence Microscopy

2009 ◽  
Vol 131 (11) ◽  
pp. 4042-4050 ◽  
Author(s):  
Jeffrey N. Murphy ◽  
Alan K. H. Cheng ◽  
Hua-Zhong Yu ◽  
Dan Bizzotto
2015 ◽  
Vol 2 (3) ◽  
pp. 434-442 ◽  
Author(s):  
Anne Meunier ◽  
Eleonore Triffaux ◽  
Dan Bizzotto ◽  
Claudine Buess-Herman ◽  
Thomas Doneux

2007 ◽  
Vol 1010 ◽  
Author(s):  
Tanveer Mahmud ◽  
Wojtek Wlodarski ◽  
Arnan Mitchell ◽  
Sally Gras ◽  
Adrian Trinchi ◽  
...  

AbstractIn this paper, we present the electrochemically programmed release of immobilized IgG protein molecules that have been attached to gold coated surfaces via a thiol-gold linkage. Fluorescence microscopy has been used to image the release of fluorescently tagged IgGs in phosphate buffered saline. In this technique, the reductive desorption of self-assembled monolayers is employed for the release of proteins, which are immobilized on the surface either by non-covalent or covalent interactions. The voltage applied for the release of proteins is in a range of -1.5V to -60V.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 1077-1084 ◽  
Author(s):  
R Scott Reese ◽  
Marye Anne Fox

Self-assembled monolayers of sulfur-terminated oligonucleotide duplexes were formed on flat gold surfaces, either by exposure of a self-assembled monolayer bearing one oligonucleotide strand to the complementary strand or by preformation of a oligonucleotide duplex that was then deposited on a fresh gold surface. Virtually identical spectral behavior was observed whether the duplex was produced before deposition or by in situ complementary association. With a duplex bearing an appropriate pyrene end-label, the resulting thin film was photoresponsive. Surface emission measurements show no evidence for pyrene aggregation on the modified surfaces. The polarity of the photocurrent, reflecting photoinduced electron transfer initiated by photoexcitation of pyrene, is opposite that expected from the oligonucleotide-mediated reduction of the appended pyrene excited state.Key words: oligonucleotide, self-assembled monolayer, duplex formation, photoelectrochemistry, surface emission.


2019 ◽  
Vol 10 ◽  
pp. 2275-2279
Author(s):  
Elisabeth Hengge ◽  
Eva-Maria Steyskal ◽  
Rupert Bachler ◽  
Alexander Dennig ◽  
Bernd Nidetzky ◽  
...  

Surface modifications of nanoporous metals have become a highly attractive research field as they exhibit great potential for various applications, especially in biotechnology. Using self-assembled monolayers is one of the most promising approaches to modify a gold surface. However, only few techniques are capable of characterizing the formation of these monolayers on porous substrates. Here, we present a method to in situ monitor the adsorption and desorption of self-assembled monolayers on nanoporous gold by resistometry, using cysteine as example. During the adsorption an overall relative change in resistance of 18% is detected, which occurs in three distinct stages. First, the cysteine molecules are adsorbed on the outer surface. In the second stage, they are adsorbed on the internal surfaces and in the last stage the reordering accompanied by additional adsorption takes place. The successful binding of cysteine on the Au surface was confirmed by cyclic voltammetry, which showed a significant decrease of the double-layer capacitance. Also, the electrochemically controlled desorption of cysteine was monitored by concomitant in situ resistometry. From the desorption peak related to the (111) surface of the structure, which is associated with a resistance change of 4.8%, an initial surface coverage of 0.48 monolayers of cysteine could be estimated.


Sign in / Sign up

Export Citation Format

Share Document