Mechanistic Studies of the Facile Four-Electron Reduction of Azobenzene at a Single Tungsten Metal Center

1996 ◽  
Vol 118 (11) ◽  
pp. 2762-2763 ◽  
Author(s):  
Mark A. Lockwood ◽  
Phillip E. Fanwick ◽  
Odile Eisenstein ◽  
Ian P. Rothwell
1998 ◽  
Vol 120 (26) ◽  
pp. 6598-6602 ◽  
Author(s):  
Feliu Maseras ◽  
Mark A. Lockwood ◽  
Odile Eisenstein ◽  
Ian P. Rothwell

2004 ◽  
Vol 23 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Margaret R. Lentz ◽  
Jonathan S. Vilardo ◽  
Mark A. Lockwood ◽  
Phillip E. Fanwick ◽  
Ian P. Rothwell

2021 ◽  
Author(s):  
rui wei ◽  
Jingwen Hu ◽  
Xiuting Chen ◽  
Yu Gong

The sulfur radical terminally bound to the metal center can be considered as a one-electron reduction product of the complex with terminal sulfido ligand which serves as the reactive sites...


2018 ◽  
Author(s):  
◽  
Pokpong Rungthanaphatsophon

Nuclear power plants have been operated in the United States for over 60 years, generating over 800 terawatt-hours of energy per year. However, there is still no reliable process to recycle the spent nuclear fuel. This dissertation looks at the formation of actinide-ligand multiple bonds, which may give us insights into how to improve the process of separation of actinides from the spent nuclear fuels contaminated with lanthanides. This is because lanthanides cannot participate in multiple bonding and a difference in coordination chemistry between actinides and lanthanides is important in separation methods. This dissertation contains two parts, both of which involve using phosphorus to create new actinide complexes. Chapters 1 and 2 outline the use of phosphorano-stabilized carbene complexes to make short actinide-carbon bonds. In fact, these complexes exhibit the shortest uranium and thorium-carbon bonds reported in the literature. Chapter 3 revolves around investigating the synthesis, characterization, and reactivity of actinide phosphido (monoanionic phosphine) complexes. In this regard, I have synthesized the first trivalent uranium phosphido complex, (C5Me5)2U[P(SiMe3)(2,4,6- Me3C6H2)](THF). The investigation of its reactivity revealed that the complex is capable of 4-electron reduction chemistry. For example, the reaction of (C5Me5)2U[P(SiMe3)(2,4,6-Me3C6H2)](THF) with azidotrimethylsilane, N3SiMe3, produces a U(VI) complex. Three electrons are from the metal center, U(III) to U(VI), and one electron is from reductive coupling of the phosphido ligand. The phosphido chemistry can also be extended to tetravalent uranium and thorium. Chapter 4 outlines the synthesis of thorium phosphido complexes which exhibit an unusual absorption in the visible region which we contributed to a ligand to metal charge transfer. Just by varying the ligand design, we were able to manipulate the HOMO/LUMO gap, which results in an absorption in a different part of the visible region. Appendix A summaries the synthesis of copper(I) complexes with bulky terphenyl ligands. The steric properties of the complex center can be tuned by changing the substituent on the terphenyl. By carefully controlling the steric properties, different coordinating environments around the metal center can be achieved. Finally, Appendix B describes the reactivity of U(IV) phosphido complexes with organic azide and tert-butyl isocyanide.


1987 ◽  
Vol 6 (4) ◽  
pp. 902-902
Author(s):  
Jerome Silestre ◽  
Maria Calhorda ◽  
Roald Hoffman ◽  
Page Stoutland ◽  
Robert Bergman

2016 ◽  
Vol 228 (06/07) ◽  
Author(s):  
WP Roos ◽  
M Eich ◽  
S Quiros ◽  
AV Knizhnik ◽  
T Nikolova ◽  
...  

2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document