Room Temperature Alkali Metal Reduction of Carbon Dioxide

Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>

2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub>to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Achieving this reduction using earth-abundant main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere reactions and bond activation events between CO<sub>2</sub>and the MGE. Herein we report the first successful chemical reduction of a zwitterionic carbene-CO<sub>2</sub>adduct by either one or two equivalents of light alkali metals to form isolable, room-temperature-stable crystalline clusters exhibiting remarkably diverse electronic and structural characteristics. The reduction of a CAAC-CO<sub>2</sub>adduct [CAAC–CO<sub>2</sub>, <b>1</b>, CAAC = cyclic (alkyl)(amino) carbene] with one equivalent of lithium, sodium or potassium metal yields the monoanionic radicals (THF)<sub>3</sub>Li<sub>2</sub>(CAAC–CO<sub>2</sub>)<sub>2</sub>(<b>2</b>), (THF)<sub>4</sub>Na<sub>4</sub>(CAAC–CO<sub>2</sub>)<sub>4</sub>(<b>3</b>), or (THF)<sub>4</sub>K<sub>4</sub>(CAAC–CO<sub>2</sub>)<sub>4</sub>(<b>4</b>). The reduction of <b>1</b>by two or more equivalents of lithium, sodium, or potassium yields the open-shell, dianionic clusters (THF)<sub>2</sub>Li<sub>6</sub>(CAAC–CO<sub>2</sub>)<sub>3</sub>(<b>5</b>), Li<sub>12</sub>(CAAC–CO<sub>2</sub>)<sub>6</sub>(<b>6</b>), Na<sub>12</sub>(CAAC–CO<sub>2</sub>)<sub>6</sub>(<b>7</b>), and K<sub>10</sub>(CAAC–CO<sub>2</sub>)<sub>5</sub>(<b>8</b>). Each of the clusters was studied by a combination of X-ray crystallography, FTIR, UV-Vis, EPR and NMR spectroscopies, and theoretical calculations. <a>The synthetic transformation described in this report results in the facile net reduction of CO<sub>2</sub>at room temperature by lithium, sodium, and potassium metal without the need for additional metallic promoters, catalysts, or reagents – a process which does not occur in the absence of carbene.</a>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang-Fang Tan ◽  
Xiao-Ya He ◽  
Wan-Fa Tian ◽  
Yang Li

AbstractCleavage of C–O bonds in lignin can afford the renewable aryl sources for fine chemicals. However, the high bond energies of these C–O bonds, especially the 4-O-5-type diaryl ether C–O bonds (~314 kJ/mol) make the cleavage very challenging. Here, we report visible-light photoredox-catalyzed C–O bond cleavage of diaryl ethers by an acidolysis with an aryl carboxylic acid and a following one-pot hydrolysis. Two molecules of phenols are obtained from one molecule of diaryl ether at room temperature. The aryl carboxylic acid used for the acidolysis can be recovered. The key to success of the acidolysis is merging visible-light photoredox catalysis using an acridinium photocatalyst and Lewis acid catalysis using Cu(TMHD)2. Preliminary mechanistic studies indicate that the catalytic cycle occurs via a rare selective electrophilic attack of the generated aryl carboxylic radical on the electron-rich aryl ring of the diphenyl ether. This transformation is applied to a gram-scale reaction and the model of 4-O-5 lignin linkages.


1982 ◽  
Vol 37 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Wolfgang Kaim ◽  
Peter Hänel ◽  
Hans Bock

Triphenylphosphane 1, its oxide 2 and sulfide 3 undergo one-electron reduction at a mercury cathode in DMF to yield the corresponding radical anions. ESE analysis of the paramagnetic species is facilitated by deuteration and suggests a pyramidal geometry of the radicals. Reduction with potassium metal in DME at low temperature yields also radical anions for 2 and 3. The phosphane 1, however, reacts under phenyl cleavage and potassiumphenyl-assisted ring closure to the dianion of 5H-dibenzophosphole 4. This radical 4· ⊖⊖ is also obtainod by alkali metal reduction of P-phenyldibenzophosphole o, and its spin distribution is compared to iso-.-π-electronic radicals containing CH, N, O, S, or Se links instead of the phosphorus atom.


2020 ◽  
Author(s):  
Fang-Fang Tan ◽  
Xiao-Ya He He ◽  
Wan-Fa Tian ◽  
Yang Li

Abstract We have developed visible-light photoredox-catalyzed C–O bond cleavage of diaryl ethers by an acidolysis with an aryl car-boxylic acid and a following one-pot hydrolysis. Two phenols are obtained from a diaryl ether at room temperature. The aryl carboxylic acid used for the acidolysis can be recovered. The key to success of the acidolysis is merging visible-light photore-dox catalysis with a new acridinium photocatalyst and Lewic acid catalysis with Cu(TMHD)2. Preliminary mechanistic studies indicate that the catalytic cycle occurs via a rare selective electrophilic attack of the generated aryl carboxylic radical on the electron-rich aryl ring of diphenyl ether. This transformation is applied to a gram-scale reaction and the model of 4-O-5 lignin linkages.


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


Sign in / Sign up

Export Citation Format

Share Document