Bringing Biocatalysis into the Deuteration Toolbox

Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>

Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhan Li ◽  
Ke-Feng Wang ◽  
Xin Zhao ◽  
Huihui Ti ◽  
Xu-Ge Liu ◽  
...  

Abstract Alkyl carboxylic acids as well as primary amines are ubiquitous in all facets of biological science, pharmaceutical science, chemical science and materials science. By chemical conversion to redox-active esters (RAE) and Katritzky’s N-alkylpyridinium salts, respectively, alkyl carboxylic acids and primary amines serve as ideal starting materials to forge new connections. In this work, a Mn-mediated reductive decarboxylative/deaminative functionalization of activated aliphatic acids and primary amines is disclosed. A series of C-X (X = S, Se, Te, H, P) and C-C bonds are efficiently constructed under simple and mild reaction conditions. The protocol is applicable to the late-stage modification of some structurally complex natural products or drugs. Preliminary mechanistic studies suggest the involvement of radicals in the reaction pathway.


2014 ◽  
Vol 126 (23) ◽  
pp. 6041-6045 ◽  
Author(s):  
Xin Yan ◽  
Ewa Sokol ◽  
Xin Li ◽  
Guangtao Li ◽  
Shiqing Xu ◽  
...  

2019 ◽  
Author(s):  
Zhiwei Ji ◽  
Changan Liu ◽  
Weiling Zhao ◽  
Claudio Soto ◽  
Xiaobo Zhou

AbstractAlzheimer’s disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States. Unfortunately, current therapies are largely palliative and several potential drug candidates have failed in late-stage clinical trials. Studies suggest that microglia-mediated neuroinflammation might be responsible for the failures of various therapies. Microglia contribute to Aβ clearance in the early stage of neurodegeneration and may contribute to AD development at the late stage by releasing pro-inflammatory cytokines. However, the activation profile and phenotypic changes of microglia during the development of AD are poorly understood. To systematically understand the key role of microglia in AD progression and predict the optimal therapeutic strategyin silico, we developed a 3D multi-scale model of AD (MSMAD) by integrating multi-level experimental data, to manipulate the neurodegeneration in a simulated system. Based on our analysis, we revealed how TREM2-related signal transduction leads to an imbalance in the activation of different microglia phenotypes, thereby promoting AD development. Our MSMAD model also provides an optimal treatment strategy for improving the outcome of AD treatment.


Author(s):  
Maxim Radzhabov ◽  
Neal Mankad

<a></a><a>We demonstrated unprecedentedly that Co complexes can catalyze hydrogermylation of alkynes. Subsequently, a selective, accessible method was developed to synthesize E-(β)-vinyl(trialkyl)germanes from various terminal alkynes with high yields. As shown on multiple examples, the developed method demonstrates broad functional group tolerance and practical utility for late-stage hydrogermylation of drugs and natural products. The method is compatible with alkynes bearing both aryl and alkyl substituents, providing unrivaled selectivity for previously challenging 1° alkyl-substituted alkynes. Moreover, the catalyst used in this method, Co<sub>2</sub>(CO)<sub>8</sub>, is a cheap and commercially available reagent. Conducted mechanistic studies supported syn-addition of Bu<sub>3</sub>GeH to an alkyne</a> π-complex.


2020 ◽  
Author(s):  
Allan Watson ◽  
Nicola Bell ◽  
Chao Xu ◽  
James Fyfe ◽  
Julien Vantourout ◽  
...  

Metal-catalyzed C–N cross-coupling generally forms C–N bonds by reductive elimination from metal complexes bearing covalent C- and N-ligands. We have identified a Cu-mediated C–N cross-coupling that uses a dative N-ligand in the bond forming event, which, in contrast to conventional methods, generates reactive cationic products. Mechanistic studies suggest the process operates via transmetalation of an aryl organoboron to a Cu(II) complex bearing neutral N-ligands, such as nitriles or N-heterocycles. Subsequent generation of a putative Cu(III) complex enables the oxidative C–N coupling to take place, delivering nitrilium intermediates and pyridinium products. The reaction is general for a range of N(sp) and N(sp<sup>2</sup>) precursors and can be applied to drug synthesis and late-stage N-arylation, and the limitations in the methodology are mechanistically evidenced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leitao Huan ◽  
Xiaomin Shu ◽  
Weisai Zu ◽  
De Zhong ◽  
Haohua Huo

AbstractAsymmetric C(sp3)−H functionalization is a persistent challenge in organic synthesis. Here, we report an asymmetric benzylic C−H acylation of alkylarenes employing carboxylic acids as acyl surrogates for the synthesis of α-aryl ketones via nickel and photoredox dual catalysis. This mild yet straightforward protocol transforms a diverse array of feedstock carboxylic acids and simple alkyl benzenes into highly valuable α-aryl ketones with high enantioselectivities. The utility of this method is showcased in the gram-scale synthesis and late-stage modification of medicinally relevant molecules. Mechanistic studies suggest a photocatalytically generated bromine radical can perform benzylic C−H cleavage to activate alkylarenes as nucleophilic coupling partners which can then engage in a nickel-catalyzed asymmetric acyl cross-coupling reaction. This bromine-radical-mediated C−H activation strategy can be also applied to the enantioselective coupling of alkylarenes with chloroformate for the synthesis of chiral α-aryl esters.


Sign in / Sign up

Export Citation Format

Share Document