Orthogonal Ternary Functionalization of a Mesoporous Metal–Organic Framework via Sequential Postsynthetic Ligand Exchange

2015 ◽  
Vol 137 (33) ◽  
pp. 10508-10511 ◽  
Author(s):  
Chong Liu ◽  
Tian-Yi Luo ◽  
Evan S. Feura ◽  
Chen Zhang ◽  
Nathaniel L. Rosi
2019 ◽  
Author(s):  
Timothée Stassin ◽  
Ivo Stassen ◽  
Joao Marreiros ◽  
Alexander John Cruz ◽  
Rhea Verbeke ◽  
...  

A simple solvent- and catalyst-free method is presented for the synthesis of the mesoporous metal-organic framework (MOF) MAF-6 (RHO-Zn(eIm)2) based on the reaction of ZnO with 2-ethylimidazole vapor at temperatures ≤ 100 °C. By translating this method to a chemical vapor deposition (CVD) protocol, mesoporous crystalline films could be deposited for the first time entirely from the vapor phase. A combination of PALS and Kr physisorption measurements confirmed the porosity of these MOF-CVD films and the size of the MAF-6 supercages (diam. ~2 nm), in close agreement with powder data and calculations. MAF-6 powders and films were further characterized by XRD, TGA, SEM, FTIR, PDF and EXAFS. The exceptional uptake capacity of the mesoporous MAF-6 in comparison to the microporous ZIF-8 is demonstrated by vapor-phase loading of a molecule larger than the ZIF-8 windows.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


Adsorption ◽  
2021 ◽  
Author(s):  
Paulo G. M. Mileo ◽  
Diony N. Gomes ◽  
Daniel V. Gonçalves ◽  
Sebastião M. P. Lucena

2012 ◽  
Vol 48 (27) ◽  
pp. 3297 ◽  
Author(s):  
Daqiang Yuan ◽  
Rachel B. Getman ◽  
Zhangwen Wei ◽  
Randall Q. Snurr ◽  
Hong-Cai Zhou

2022 ◽  
Author(s):  
Changzhi Hu ◽  
Yuhao Xiong ◽  
Ling Liang ◽  
Weiyuan Zuo ◽  
Fanggui Ye ◽  
...  

Metal-organic framework (MOF) as nanozymes has been widely used in biosensing. However, MOF has inherent defects of easy agglomeration, leading to stacking of active surfaces. In addition, the low conductivity...


2016 ◽  
Vol 28 (20) ◽  
pp. 7190-7193 ◽  
Author(s):  
Greig C. Shearer ◽  
Jenny G. Vitillo ◽  
Silvia Bordiga ◽  
Stian Svelle ◽  
Unni Olsbye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document