Sampling Accelerated Micron Scale Ice Particles with a Quadrupole Ion Trap Mass Spectrometer

Author(s):  
Anton Belousov ◽  
Morgan Miller ◽  
Robert Continetti ◽  
Stojan Madzunkov ◽  
Jurij Simcic ◽  
...  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
J. Simcic ◽  
D. Nikolić ◽  
A. Belousov ◽  
D. Atkinson ◽  
C. Lee ◽  
...  

AbstractTo date, a variety of different types of mass spectrometers have been utilized on missions to study the composition of atmospheres of solar system bodies, including Venus, Mars, Jupiter, Titan, the moon, and several comets. With the increasing interest in future small probe missions, mass spectrometers need to become even more versatile, lightweight, compact, and sensitive.For in situ exploration of ice giant atmospheres, the highest priority composition measurements are helium and the other noble gases, noble gas isotopes, including 3He/4He, and other key isotopes like D/H. Other important but lower priority composition measurements include abundances of volatiles C, N, S, and P; isotopes 13C/12C, 15N/14N, 18O/17O/16O; and disequilibrium species PH3, CO, AsH3, GeH4, and SiH4. Required measurement accuracies are largely defined by the accuracies achieved by the Galileo (Jupiter) probe Neutral Mass Spectrometer and Helium Abundance Detectors, and current measurement accuracies of solar abundances.An inherent challenge of planetary entry probe mass spectrometers is the introduction of material to be sampled (gas, solid, or liquid) into the instrument interior, which operates at a vacuum level. Atmospheric entry probe mass spectrometers typically require a specially designed sample inlet system, which ideally provides highly choked, nearly constant mass-flow intake over a large range of ambient pressures. An ice giant descent probe would have to operate for 1-2 hours over a range of atmospheric pressures, possibly covering 2 or more orders of magnitude, from the tropopause near 100 mbar to at least 10 bars, in an atmospheric layer of depth beneath the tropopause of about 120 km at Neptune and about 150 km at Uranus.The Jet Propulsion Laboratory’s Quadrupole Ion Trap Mass Spectrometer (QITMS) is being developed to achieve all of these requirements. A compact, wireless instrument with a mass of only 7.5 kg, and a volume of 7 liters (7U), the JPL QITMS is currently the smallest flight mass spectrometer available for possible use on planetary descent probes as well as small bodies, including comet landers and surface sample return missions. The QITMS is capable of making measurements of all required constituents in the mass range of 1–600 atomic mass units (u) at a typical speed of 50 mass spectra per second, with a sensitivity of up to $10^{13}$ 10 13  counts/mbar/sec and mass resolution of $m/\Delta m=18000$ m / Δ m = 18000 at m/q = 40. (Throughout this paper we use the unit of m/q = u/e for the mass-to-charge ratio, where atomic mass unit and elementary charge are $1~\text{u} = 1.66\times 10^{-27}~\text{kg}$ 1 u = 1.66 × 10 − 27 kg and $1\text{e} = 1.6\times 10^{-19}$ 1 e = 1.6 × 10 − 19 C, respectively.) The QITMS features a novel MEMS-based inlet system driven by a piezoelectric actuator that continuously regulates gas flow at inlet pressures of up to 100 bar.In this paper, we present an overview of the QITMS capabilities, including instrument design and characteristics of the inlet system, as well as the most recent results from laboratory measurements in different modes of operation, especially suitable for ice giant atmospheres exploration.


2018 ◽  
Vol 19 (9) ◽  
pp. 2789 ◽  
Author(s):  
Yung-Kun Chuang ◽  
Szu-Hsueh Lai ◽  
Jung-Lee Lin ◽  
Chung-Hsuan Chen

We present the first report on complete cluster distributions of cytochrome c (molecular weight of 12.4 kDa) and bovine serum albumin ((BSA), molecular weight of 66.4 kDa) with mass-to-charge ratio (m/z) reaching 350,000 and 1,400,000, respectively, by matrix-assisted laser desorption/ionization (MALDI). Large cluster distributions of the analytes were measured by our homemade frequency-scanned quadrupole ion trap (QIT) mass spectrometer with a charge detector. To our knowledge, we report the highest m/z clusters of these two biomolecules. The quantitative results indicate that large clusters ions of cytochrome c and BSA follow the power law (r2 > 0.99) with cluster size distribution, which provides experimental evidence for the laser ablation studies of MALDI.


2003 ◽  
Vol 56 (5) ◽  
pp. 389 ◽  
Author(s):  
Ana K. Vrkic ◽  
Richard A. J. O'Hair

Trimethylborate (TMB) reacts with deprotonated monomer, homo-, and heterodimer ions of nucleotides (2′-deoxyadenosine-5′-monophosphate [dAMP], 2′-deoxycytidine-5′-monophosphate [dCMP], 2′-deoxyguanosine-5′-monophosphate [dGMP], and 2′-deoxythymidine-5′-monophosphate [dTMP]) in a quadrupole ion trap mass spectrometer by addition with concomitant elimination of one or two methanol molecules (monomers), one or three methanol molecules (homodimers), and three methanol molecules (heterodimers). The mode of reaction appears to influence the observed rates, with the loss of only one methanol molecule corresponding to the fastest rate. There appears to be a structure–reactivity correlation for the monomers, with the [dGMP – H]– ions (which adopt a syn conformation of the guanine moiety) reacting fastest with TMB through the loss of only one methanol molecule. No such structure–reactivity trends are observed for the homo- and heterodimers. In addition, the collision-induced dissociation (CID) reactions of the [(dXMP)n − H]– (n = 1 or 2) as well as the [dXMP + dYMP – H + (CH3O)3B – 3(CH3OH)]– ions (where nucleotides X, Y = A, C, G, or T) were studied. The latter fragment to form [dXMP – H + BPO4]– and [dXMP – 3H + BPO3]– ions (where X = A, C, G, or T), while [dXMP – H]– ions fragment by neutral base loss. The homo- and heterodimers fragment to form [dXMP – H]– and [dXMP + HPO3]– ions, and the relative abundances of the [dXMP – H]– monomer ions from the heterodimers led to the following acidity order: dGMP ≈ dTMP > dCMP > dAMP.


2004 ◽  
Vol 76 (24) ◽  
pp. 7346-7353 ◽  
Author(s):  
Jonathan Wilson ◽  
Richard W. Vachet

Sign in / Sign up

Export Citation Format

Share Document