Resistant-Starch Formation in High-Amylose Maize Starch during Kernel Development

2010 ◽  
Vol 58 (13) ◽  
pp. 8043-8047 ◽  
Author(s):  
Hongxin Jiang ◽  
Junyi Lio ◽  
Mike Blanco ◽  
Mark Campbell ◽  
Jay-lin Jane
2007 ◽  
Vol 97 (1) ◽  
pp. 134-144 ◽  
Author(s):  
Anthony R. Bird ◽  
Michelle Vuaran ◽  
Ian Brown ◽  
David L. Topping

Four groups of young pigs (n6) were fed a diet containing 50 % maize starch as either a highly digestible waxy starch (control; 0 % amylose) or one of three resistant starch (RS) diets, namely a high-amylose maize starch (HAMS; 85 % amylose), this starch subjected to hydrothermal treatment (HTHAMS; 85 % amylose), or a blend of HAMS and HTHAMS included in equal amounts, for 21 d. Food intake and live weight at the end of the study were similar among the four groups. Ileal starch digestibility was lower in pigs fed the three RS diets but was greater for HAMS (88 %) than for HTHAMS (70 %;P < 0·05). Faecal output and large bowel digesta mass, and concentrations and pools of individual and total SCFA were higher (by about two- to threefold; allP < 0·05) and digesta pH lower (by about 1 unit, allP < 0·001) in pigs fed either HAMS or HTHAMS compared to the controls. These differences in biomarkers were seen along the length of the large bowel. Colon length was 0·5–0·9 m longer (19–35 %) in pigs fed the high-RS diets relative to those fed the highly digestible starch diet (P < 0·05). Faecal and proximal colonic lactobacilli and bifidobacteria numbers were higher (by 1 and 3 log units;P < 0·05) in pigs fed the HAMS or HTHAMS diets. Although both high-amylose starches promoted fermentation throughout the large bowel, the data suggest that the effects of HTHAMS may be more pronounced in the distal region compared to those of HAMS.


Author(s):  
Ramadass Balamurugan ◽  
Srinivasan Pugazhendhi ◽  
Gowri M. Balachander ◽  
Tamilselvan Dharmalingam ◽  
Elissa K Mortimer ◽  
...  

The health benefits of dietary amylase resistant starch (RS) arise from intestinal microbial fermentation and generation of short chain fatty acids (SCFA). We compared the intestinal fermentative capability of stunted and nonstunted (‘healthy’) children in southern India using two types of RS: high amylose maize starch (HAMS) and acetylated HAMS (HAMSA). Twenty children (10 stunted and 10 healthy) aged 2 to 5 years were fed biscuits containing HAMS (10 g/day) for two weeks followed by a 2-week washout and then HAMSA biscuits (10 g/day) for 2 weeks. Fecal samples were collected at 3-4 day intervals and pH and SCFA analyzed. At entry, stunted children had lower SCFA concentrations compared to healthy children. Both types of RS led to a significant decrease in fecal pH and increase in fecal acetate and propionate in both healthy and stunted children. However, while HAMS increased fecal butyrate in both groups of children, HAMSA increased butyrate in healthy but not stunted children. Furthermore, healthy children showed a significantly greater increase than stunted children in both acetate and butyrate when fed either RS. No adverse effects were reported with either RS. Stunted children have impaired capacity to ferment certain types of RS which has implications for choice of RS in formulations aimed at improving microbial function in stunted children.


2021 ◽  
pp. 130344
Author(s):  
Wanhe Li ◽  
Zan Zhou ◽  
Songlin Fan ◽  
Xiunan Cai ◽  
Jian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document