Structural and Biochemical Changes Induced by Pulsed Electric Field Treatments on Cabernet Sauvignon Grape Berry Skins: Impact on Cell Wall Total Tannins and Polysaccharides

2014 ◽  
Vol 62 (13) ◽  
pp. 2925-2934 ◽  
Author(s):  
Céline Cholet ◽  
Cristèle Delsart ◽  
Mélina Petrel ◽  
Etienne Gontier ◽  
Nabil Grimi ◽  
...  
2017 ◽  
Vol 5 (7) ◽  
pp. 6046-6053 ◽  
Author(s):  
Gerard P. ‘t Lam ◽  
Jelmer A. van der Kolk ◽  
Akshita Chordia ◽  
Marian H. Vermuë ◽  
Giuseppe Olivieri ◽  
...  

1994 ◽  
Vol 35 (5) ◽  
pp. 1241-1243 ◽  
Author(s):  
Martine Lecas ◽  
Jean-Marc Brillouet

2008 ◽  
Vol 29 (4) ◽  
pp. 296-301 ◽  
Author(s):  
Federico Gómez Galindo ◽  
P. Thomas Vernier ◽  
Petr Dejmek ◽  
António Vicente ◽  
Martin A. Gundersen

2013 ◽  
Vol 64 (4) ◽  
pp. 476-484 ◽  
Author(s):  
N. El Darra ◽  
N. Grimi ◽  
E. Vorobiev ◽  
R. G. Maroun ◽  
N. Louka

Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 73
Author(s):  
Feng ◽  
He ◽  
Pan ◽  
Xu ◽  
Xue ◽  
...  

This paper adopts the Design-Expert software to design an orthogonal experiment with a pulse voltage amplitude of 30 kV, processing time of three minutes, and a pulse width of 45 μs as the center points, in order to study the effects of the pulsed electric field on the cell wall and infection activity of Rhizoctonia solani. High-voltage pulse power was used to treat the bacteria solution with the pulsed electric field. Untreated Rhizoctonia solani were used as the control group. Transmission electron microscope images were used to analyze the cell wall damage. ANOVA was performed on the experimental results and the fitting degree of the model was good (F>>1). Response surface analysis was used to optimize the parameters based on chitin content and polygalacturonase activity. The optimal treatment conditions were obtained as a pulse voltage amplitude of 25 kV, processing time of 2.54 min, and a pulse width of 34.35 μs. On this basis, experiments were designed to verify the optimized conditions. The results demonstrated that, under the optimal processing conditions, the damage index of the cell wall of Rhizoctonia solani was 9.59% lower in chitin content and 83.05% lower in polygalacturonase activity compared with those of the control group. All indexes were significantly different (P < 0.001), which is consistent with the parameter optimization results. The results provide a theoretical basis for the pulsed electric field assisted sterilization and reference for the design of plant protection machinery in the latter stage.


2013 ◽  
Vol 133 (2) ◽  
pp. 32-37 ◽  
Author(s):  
Akira Nakagawa ◽  
Hitoshi Hatayama ◽  
Koichi Takaki ◽  
Shoji Koide ◽  
Yukio Kawamura

Sign in / Sign up

Export Citation Format

Share Document