cell wall porosity
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Mengdan Cao ◽  
Wenting Ren ◽  
Jiawei Zhu ◽  
Hankun Wang ◽  
Juan Guo ◽  
...  

Abstract Efficient convention of bamboo biomass into biofuel and biomaterials, as well as chemical treatment are both highly related to the porosity of cell wall. The present work characterizes the micropore and mesopore structure in cell walls of six different bamboo species and tissue types using CO2 and N2 adsorption. Two plantation wood species were also tested for comparison. Bamboo species normally showed lower cell wall porosity (2.64%-3.75%) than wood species (3.98%-5.06%), indicating a more compact structure for bamboo than wood. A distinct species dependence of cell wall pore structures and porosity was also observed. Furthermore, the cell wall pore structure and porosity are shown to be tissue-specific, as the parenchyma cells exhibit higher pore volume and porosity compared to bamboo fibers. The obtained results give new explanations on the known facts that both bamboo and bamboo fibers exhibit higher biomass recalcitrance as compared to wood and bamboo parenchyma cells, constructing the base of pretreatment optimization and subsequent processing for bamboo-derived biofuels and biomaterials.


2021 ◽  
Vol 117 ◽  
pp. 106657
Author(s):  
Hai-Teng Li ◽  
Si-Qian Chen ◽  
Alexander T. Bui ◽  
Bin Xu ◽  
Sushil Dhital

2020 ◽  
Vol 11 (1) ◽  
pp. 285-296 ◽  
Author(s):  
Mostafa Zahir ◽  
Vincenzo Fogliano ◽  
Edoardo Capuano

Soybean cell wall porosity and permeability are increased by bio-based food processing and protease enzyme action during the digestion process.


2019 ◽  
Vol 78 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Michael Altgen ◽  
Suvi Kyyrö ◽  
Olli Paajanen ◽  
Lauri Rautkari

AbstractThe thermal degradation of wood is affected by a number of process parameters, which may also cause variations in the resistance against decay fungi. This study compares changes in the chemical composition, water-related properties and decay resistance of Scots pine sapwood that was either thermally modified (TM) in dry state at elevated temperatures (≥ 185 °C) or treated in pressurized hot water at mild temperatures (≤ 170 °C). The thermal decomposition of easily degradable hemicelluloses reduced the mass loss caused by Rhodonia placenta, and it was suggested that the cumulative mass loss is a better indicator of an actual decay inhibition. Pressurized hot water extraction (HWE) did not improve the decay resistance to the same extent as TM, which was assigned to differences in the wood-water interactions. Cross-linking reactions during TM caused a swelling restraint and an effective reduction in moisture content. This decreased the water-swollen cell wall porosity, which presumably hindered the transport of degradation agents through the cell wall and/or reduced the accessibility of wood constituents for degradation agents. This effect was absent in hot water-extracted wood and strong decay occurred even when most hemicelluloses were already removed during HWE.


IAWA Journal ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 721-740 ◽  
Author(s):  
Lloyd A. Donaldson ◽  
Adya Singh ◽  
Laura Raymond ◽  
Stefan Hill ◽  
Uwe Schmitt

ABSTRACT Douglas-fir (Pseudotsuga menziesii) has distinctly colored heartwood as a result of extractive deposition during heartwood formation. This is known to affect natural durability and treatability with preservatives, as well as other types of wood modification involving infiltration with chemicals. The distribution of extractives in sapwood and heartwood of Douglas-fir was studied using fluorescence microscopy. Several different types of extractive including flavonoids, resin acids, and tannins were localized to heartwood cell walls, resin canals, and rays, using autofluorescence or staining of flavonoids with Naturstoff A reagent. Extractives were found to infiltrate the cell walls of heartwood tracheids and were also present to a lesser extent in sapwood tracheid cell walls, especially in regions adjacent to the resin canals. Förster resonance energy transfer measurements showed that the accessibility of lignin lining cell wall micropores to rhodamine dye was reduced by about 50%, probably as a result of cell wall-bound tannin-like materials which accumulate in heartwood relative to sapwood, and are responsible for the orange color of the heartwood. These results indicate that micro-distribution of heartwood extractives affects cell wall porosity which is reduced by the accumulation of heartwood extractives in softwood tracheid cell walls.


2019 ◽  
Vol 53 (3) ◽  
pp. 703-726 ◽  
Author(s):  
Magdalena Broda ◽  
Simon F. Curling ◽  
Morwenna J. Spear ◽  
Callum A. S. Hill

2019 ◽  
Vol 218 (4) ◽  
pp. 1408-1421 ◽  
Author(s):  
Xiaohui Liu ◽  
Jiazhou Li ◽  
Heyu Zhao ◽  
Boyang Liu ◽  
Thomas Günther-Pomorski ◽  
...  

Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images. The quenching assay was used to investigate how changes in cell wall porosity affect the capability for extension growth in the model plant Arabidopsis thaliana. Results suggest that increased porosity is not a precondition but a result of cell extension, thereby providing new insight on the mechanism plant organ growth. Furthermore, it was shown that higher cell wall porosity can facilitate the action of antifungal drugs in Saccharomyces cerevisiae, presumably by facilitating uptake.


BIO-PROTOCOL ◽  
2019 ◽  
Vol 9 (16) ◽  
Author(s):  
Xiaohui Liu ◽  
Thomas Günther Pomorski ◽  
Johannes Liesche

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Louise Walker ◽  
Prashant Sood ◽  
Megan D. Lenardon ◽  
Gillian Milne ◽  
Jon Olson ◽  
...  

ABSTRACT The fungal cell wall is a critically important structure that represents a permeability barrier and protective shield. We probed Candida albicans and Cryptococcus neoformans with liposomes containing amphotericin B (AmBisome), with or without 15-nm colloidal gold particles. The liposomes have a diameter of 60 to 80 nm, and yet their mode of action requires them to penetrate the fungal cell wall to deliver amphotericin B to the cell membrane, where it binds to ergosterol. Surprisingly, using cryofixation techniques with electron microscopy, we observed that the liposomes remained intact during transit through the cell wall of both yeast species, even though the predicted porosity of the cell wall (pore size, ~5.8 nm) is theoretically too small to allow these liposomes to pass through intact. C. albicans mutants with altered cell wall thickness and composition were similar in both their in vitro AmBisome susceptibility and the ability of liposomes to penetrate the cell wall. AmBisome exposed to ergosterol-deficient C. albicans failed to penetrate beyond the mannoprotein-rich outer cell wall layer. Melanization of C. neoformans and the absence of amphotericin B in the liposomes were also associated with a significant reduction in liposome penetration. Therefore, AmBisome can reach cell membranes intact, implying that fungal cell wall viscoelastic properties are permissive to vesicular structures. The fact that AmBisome can transit through chemically diverse cell wall matrices when these liposomes are larger than the theoretical cell wall porosity suggests that the wall is capable of rapid remodeling, which may also be the mechanism for release of extracellular vesicles. IMPORTANCE AmBisome is a broad-spectrum fungicidal antifungal agent in which the hydrophobic polyene antibiotic amphotericin B is packaged within a 60- to 80-nm liposome. The mode of action involves perturbation of the fungal cell membrane by selectively binding to ergosterol, thereby disrupting membrane function. We report that the AmBisome liposome transits through the cell walls of both Candida albicans and Cryptococcus neoformans intact, despite the fact that the liposome is larger than the theoretical cell wall porosity. This implies that the cell wall has deformable, viscoelastic properties that are permissive to transwall vesicular traffic. These observations help explain the low toxicity of AmBisome, which can deliver its payload directly to the cell membrane without unloading the polyene in the cell wall. In addition, these findings suggest that extracellular vesicles may also be able to pass through the cell wall to deliver soluble and membrane-bound effectors and other molecules to the extracellular space.


Sign in / Sign up

Export Citation Format

Share Document