scholarly journals Discovery and Characterization of Potent Thiazoles versus Methicillin- and Vancomycin-Resistant Staphylococcus aureus

2014 ◽  
Vol 57 (4) ◽  
pp. 1609-1615 ◽  
Author(s):  
Haroon Mohammad ◽  
Abdelrahman S. Mayhoub ◽  
Adil Ghafoor ◽  
Muhammad Soofi ◽  
Ruba A. Alajlouni ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Seyed Asghar Havaei ◽  
Amir Azimian ◽  
Hosein Fazeli ◽  
Mahmood Naderi ◽  
Kiarash Ghazvini ◽  
...  

Background. Global concerns have been raised due to upward trend of Vancomycin Intermediate Staphylococcus aureus (VISA) and Vancomycin Resistant Staphylococcus aureus (VRSA) reports which mean casting doubt on the absolute effectiveness of the last line of antibiotic treatment for S. aureus, vancomycin. Hence, epidemiological evaluation can improve global health care policies. Methodology. 171 Isolates of Staphylococcus aureus were collected from different types of clinical samples in selected hospitals in Isfahan, Mashhad, and Tehran, Iran. Then, they were evaluated by agar screening, disk diffusion, and MIC method to determine their resistance to vancomycin and methicillin. The isolated VISA strains were then confirmed with genetic analysis by the evaluation of mecA and vanA genes, SCCmec, agr, and spa type, and also toxin profiles. MLST was also performed. Results and Conclusion. Our data indicated that 67% of isolated S. aureus strains were resistant to methicillin. Furthermore, five isolates (2.9%) had intermediate resistance to vancomycin (VISA). In contrast to usual association of VISA with MRSA strains, we found two isolates of MSSA-VISA. Therefore, our data suggests a probable parallel growing trend of VISA towards MSSA, along with MRSA strains. However, more samples are required to confirm these primarily data. Moreover, genetic analysis of the isolated VISA strains revealed that these strains are endemic Asian clones.


2000 ◽  
Vol 44 (2) ◽  
pp. 294-303 ◽  
Author(s):  
Richard F. Pfeltz ◽  
Vineet K. Singh ◽  
Jennifer L. Schmidt ◽  
Michael A. Batten ◽  
Christopher S. Baranyk ◽  
...  

ABSTRACT A series of 12 Staphylococcus aureus strains of various genetic backgrounds, methicillin resistance levels, and autolytic activities were subjected to selection for the glycopeptide-intermediate S. aureus (GISA) susceptibility phenotype on increasing concentrations of vancomycin. Six strains acquired the phenotype rapidly, two did so slowly, and four failed to do so. The vancomycin MICs for the GISA strains ranged from 4 to 16 μg/ml, were stable to 20 nonselective passages, and expressed resistance homogeneously. Neither ease of acquisition of the GISA phenotype nor the MIC attained correlated with methicillin resistance hetero- versus homogeneity or autolytic deficiency or sufficiency. Oxacillin MICs were generally unchanged between parent and GISA strains, although the mec members of both isogenic methicillin-susceptible and methicillin-resistant pairs acquired the GISA phenotype more rapidly and to higher MICs than did their susceptible counterparts. Transmission electron microscopy revealed that the GISA strains appeared normal in the absence of vancomycin but had thickened and diffuse cell walls when grown with vancomycin at one-half the MIC. Common features among GISAs were reduced doubling times, decreased lysostaphin susceptibilities, and reduced whole-cell and zymographic autolytic activities in the absence of vancomycin. This, with surface hydrophobicity differences, indicated that even in the absence of vancomycin the GISA cell walls differed from those of the parents. Autolytic activities were further reduced by the inclusion of vancomycin in whole-cell and zymographic studies. The six least vancomycin-susceptible GISA strains exhibited an increased capacity to remove vancomycin from the medium versus their parent lines. This study suggests that while some elements of the GISA phenotype are strain specific, many are common to the phenotype although their expression is influenced by genetic background. GISA strains with similar glycopeptide MICs may express individual components of the phenotype to different extents.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Parastoo Zarghami Moghaddam ◽  
Amir Azimian ◽  
Abbas Akhavan Sepahy ◽  
Alireza Iranbakhsh

Background: The emergence of antibiotic-resistant Staphylococcus aureus strains is one of the major concerns about the various staphylococcal infections. Vancomycin is one the most important effective antibiotics on staphylococcal lethal infections. To date, vancomycin-resistant strains are increasingly isolated in different parts of the world, and it is alerting. Objectives: The current study was designed to evaluate the prevalence, and antibiotic susceptibility pattern of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) isolates in the main tertiary hospital of Bojnurd, Iran. Methods: S. aureus isolates were collected from different clinical samples in Imam Reza Hospital of Bojnurd. After identification of isolates through using conventional methods, they were evaluated by agar screening, disk diffusion, and minimum inhibitory concentration (MIC) methods to determine resistance to vancomycin and methicillin. We also performed polymerase chain reaction (PCR) for the detection of mecA, mecC, vanA, and vanB genes. After confirmation of vancomycin resistance, genetic analysis was performed using SCCmec, agr, and spa typing, and multilocus sequence typing (MLST) methods on VRSA isolates. Results: We found four vancomycin-resistant isolates (1.29%). Also, 75% of isolates were resistant to cefoxitin. Using the PCR method, mecA was found in 73%, mecC in 0.64%, and vanA in 1.29% of isolates. Interestingly, we found two mecC positive isolates in MRSA isolates. The alpha-hemolysin (81.81%) and enterotoxin C (27%) had the highest and lowest toxins percentage, respectively. Among mecA positive isolates, SCCmecIV (37%), SCCmecIII (31.27%), SCCmecI (14%), SCCmecII (11%), and SCCmecV (5.7%) were the most prevalent SCCmec types, respectively. It should be noted that the two mecC positive isolates belonged to SCCmecXI. AgrI (76.29%) was the highest agr type. We recognized t037 as the dominant spa type, and ST239, ST6, ST97, and ST8 were found in VRSA isolates. Conclusions: In our study, the frequency of mecA genes in MRSA isolates was very high. It seems that the resistant isolates belonged to endemic clones of Iran.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183607 ◽  
Author(s):  
Marjan Shekarabi ◽  
Bahareh Hajikhani ◽  
Alireza Salimi Chirani ◽  
Maryam Fazeli ◽  
Mehdi Goudarzi

2015 ◽  
Vol 101 ◽  
pp. 384-390 ◽  
Author(s):  
Dexter C. Davis ◽  
Haroon Mohammad ◽  
Kwaku Kyei-Baffour ◽  
Waleed Younis ◽  
Cassidy Noel Creemer ◽  
...  

2021 ◽  
Author(s):  
Neda Jegargoshe Shirin ◽  
Tohid Piri Gharaghie ◽  
Sheida Beiranvand ◽  
Anali Riahi ◽  
Nasim Fattahi

Abstract Background: We aim to assess the antibacterial and anti-biofilm properties of niosome-encapsulated meropenem. Methods: After isolating S. aureus isolates and determining their microbial sensitivity, their ability to form biofilms was examined using plate microtiter assay. Various formulations of niosome-encapsulated meropenem were prepared using the thin-film hydration method, Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Inhibitory Concentration (MIC) were determined, and biofilm genes expression was examined. Drug formulations’ toxicity effect on HDF cells were determined using MTT assay.Results: Out of the 162 separated Staphylococcus aureus, 106 were resistant to methicillin. 87 MRSA isolates were vancomycin-resistant, all of which could form biofilms. The F1 formulation of neoplastic meropenem with a size of 51.3 ± 5.84 and an encapsulation index of 84.86 ± 3.14 was detected, which prevented biofilm growth with a BDI index of 69% and reduced icaD, FnbA, Ebps biofilms’ expression with p ≤0.05 in addition to reducing MBIC and MIC by 4-6 times. Interestingly, F1 formulation of neoplastic meropenem indicated cell viability over 90% at all tested concentrations. Conclusions: Results of the present study indicate that niosome-encapsulated meropenem reduces the resistance of Staphylococcus aureus MRSA to antibiotics in addition to increasing its anti-biofilm and antibiotic activity, and could prove useful as a new strategy for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document