Spherical Shape Complementarity as an Overriding Motif in the Molecular Recognition of Noncharged Organic Guests byp-Sulfonatocalix[4]arene:  Complexation of Bicyclic Azoalkanes

2005 ◽  
Vol 70 (24) ◽  
pp. 9960-9966 ◽  
Author(s):  
Hüseyin Bakirci ◽  
Apurba L. Koner ◽  
Werner M. Nau
Author(s):  
Fumio Hamada ◽  
Koutarou Hoshi ◽  
Yutaka Higuchi ◽  
Kouichi Murai ◽  
Youichi Akagami ◽  
...  

1984 ◽  
Vol 75 ◽  
pp. 607-613 ◽  
Author(s):  
Kevin D. Pang ◽  
Charles C. Voge ◽  
Jack W. Rhoads

Abstract.All observed optical and infrared properties of Saturn's E-ring can be explained in terms of Mie scattering by a narrow size distribution of ice spheres of 2 - 2.5 micron diameter. The spherical shape of the ring particles and their narrow size distribution imply a molten (possibly volcanic) origin on Enceladus. The E-ring consists of many layers, possibly stratified by electrostatic levitation.


Author(s):  
H.C. Eaton ◽  
B.N. Ranganathan ◽  
T.W. Burwinkle ◽  
R. J. Bayuzick ◽  
J.J. Hren

The shape of the emitter is of cardinal importance to field-ion microscopy. First, the field evaporation process itself is closely related to the initial tip shape. Secondly, the imaging stress, which is near the theoretical strength of the material and intrinsic to the imaging process, cannot be characterized without knowledge of the emitter shape. Finally, the problem of obtaining quantitative geometric information from the micrograph cannot be solved without knowing the shape. Previously published grain-boundary topographies were obtained employing an assumption of a spherical shape (1). The present investigation shows that the true shape deviates as much as 100 Å from sphericity and boundary reconstructions contain considerable error as a result.Our present procedures for obtaining tip shape may be summarized as follows. An empirical projection, D=f(θ), is obtained by digitizing the positions of poles on a field-ion micrograph.


2020 ◽  
Author(s):  
Junxia Ren ◽  
Yaozu Liu ◽  
Xin Zhu ◽  
Yangyang Pan ◽  
Yujie Wang ◽  
...  

<p><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a>The development of highly-sensitive recognition of </a><a></a><a></a><a></a><a></a><a>hazardous </a>chemicals, such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs), is of significant importance because of their widespread social concerns related to environment and human health. Here, we report a three-dimensional (3D) covalent organic framework (COF, termed JUC-555) bearing tetraphenylethylene (TPE) side chains as an aggregation-induced emission (AIE) fluorescence probe for sensitive molecular recognition.<a></a><a> </a>Due to the rotational restriction of TPE rotors in highly interpenetrated framework after inclusion of dimethylformamide (DMF), JUC-555 shows impressive AIE-based strong fluorescence. Meanwhile, owing to the large pore size (11.4 Å) and suitable intermolecular distance of aligned TPE (7.2 Å) in JUC-555, the obtained material demonstrates an excellent performance in the molecular recognition of hazardous chemicals, e.g., nitroaromatic explosives, PAHs, and even thiophene compounds, via a fluorescent quenching mechanism. The quenching constant (<i>K</i><sub>SV</sub>) is two orders of magnitude better than those of other fluorescence-based porous materials reported to date. This research thus opens 3D functionalized COFs as a promising identification tool for environmentally hazardous substances.</p>


2018 ◽  
Author(s):  
Yingqian Wang ◽  
Xiaoxia Hu ◽  
Lingling Zhang ◽  
Chunli Zhu ◽  
Jie Wang ◽  
...  

Extracellular vesicles (EVs) are involved in the regulation of cell physiological activity and the reconstruction of extracellular environment. Matrix vesicles (MVs) are a type of EVs, and they participate in the regulation of cell mineralization. Herein, bioinspired MVs embedded with black phosphorus are functionalized with cell-specific aptamer (denoted as Apt-bioinspired MVs) for stimulating biomineralization. The aptamer can direct bioinspired MVs to targeted cells, and the increasing concentration of inorganic phosphate originated from the black phosphorus can facilitate cell biomineralization. The photothermal effect of the Apt-bioinspired MVs also positively affects mineralization. In addition, the Apt-bioinspired MVs display outstanding bone regeneration performance. Considering the excellent behavior of the Apt-bioinspired MVs for promoting biomineralization, our strategy provides a way of designing bionic tools for studying the mechanisms of biological processes and advancing the development of medical engineering.<br>


Sign in / Sign up

Export Citation Format

Share Document