organic guests
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 8)

H-INDEX

24
(FIVE YEARS 3)

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 204
Author(s):  
Gabriele Travagliante ◽  
Massimiliano Gaeta ◽  
Roberto Purrello ◽  
Alessandro D’Urso

Porphyrinoids are extremely attractive for their electronic, optical, and coordination properties as well as for their versatile substitution at meso/β-positions. All these features allow porphyrinoids to behave as chiroptical hosts for chiral recognition by means of non-covalent interactions towards chiral guests. Over the years, chiral discrimination of chiral molecules such as amino acids, alcohols, amines, hydroxy-carboxylic acids, etc. has aroused the interest of the scientific community. Hence, this review aims to report on the progress to date by illustrating some relevant research regarding the chiral recognition of a multitude of chiral organic guests through several chiral mono- and bis-porphyrins via different spectroscopic techniques.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lukas Ustrnul ◽  
Tatsiana Burankova ◽  
Mario Öeren ◽  
Kristina Juhhimenko ◽  
Jenni Ilmarinen ◽  
...  

Inherently chiral, barrel-shaped, macrocyclic hosts such as cyclohexanohemicucurbit[n]urils (cycHC[n]) bind zinc porphyrins and trifluoroacetic acid externally in halogenated solvents. In the current study, we tested a set of eighteen organic guests with various functional groups and polarity, namely, thiophenols, phenols, and carboxylic and sulfonic acids, to identify a preference toward hydrogen bond–donating molecules for homologous cycHC[6] and cycHC[8]. Guests were characterized by Hirshfeld partial charges on acidic hydrogens and their binding by 1H and 19F NMR titrations. Evaluation of association constants revealed the complexity of the system and indirectly proved an external binding with stoichiometry over 2:1 for both homologs. It was found that overall binding strength is influenced by the stoichiometry of the formed complexes, the partial atomic charge on the hydrogen atom of the hydrogen bond donor, and the bulkiness of the guest. Additionally, a study on the formation of complexes with halogen anions (Cl− and Br−) in methanol and chloroform, analyzed by 1H NMR, did not confirm complexation. The current study widens the scope of potential applications for host molecules by demonstrating the formation of hydrogen-bonded complexes with multisite hydrogen bond acceptors such as cycHC[6] and cycHC[8].


2021 ◽  
Vol 9 ◽  
Author(s):  
Anna Krzton-Maziopa

Organic molecule-intercalated layered iron-based monochalcogenides are presently the subject of intense research studies due to the linkage of their fascinating magnetic and superconducting properties to the chemical nature of guests present in the structure. Iron chalcogenides have the ability to host various organic species (i.e., solvates of alkali metals and the selected Lewis bases or long-chain alkylammonium cations) between the weakly bound inorganic layers, which opens up the possibility for fine tuning the magnetic and electrical properties of the intercalated phases by controlling both the doping level and the type/shape and orientation of the organic molecules. In recent years, significant progress has been made in the field of intercalation chemistry, expanding the gallery of intercalated superconductors with new hybrid inorganic–organic phases characterized by transition temperatures to a superconducting state as high as 46 K. A typical synthetic approach involves the low-temperature intercalation of layered precursors in the presence of liquid amines, and other methods, such as electrochemical intercalation, intercalant or ion exchange, and direct solvothermal growths from anhydrous amine-based media, are also being developed. Large organic guests, while entering a layered structure on intercalation, push off the inorganic slabs and modify the geometry of their internal building blocks (edge-sharing iron chalcogenide tetrahedrons) through chemical pressure. The chemical nature and orientation of organic molecules between the inorganic layers play an important role in structural modification and may serve as a tool for the alteration of the superconducting properties. A variety of donor species well-matched with the selected alkali metals enables the adjustment of electron doping in a host structure offering a broad range of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed, involving the influence of the chemical and electrochemical nature of intercalating species on the crystal structure and critical issues related to the superconducting properties of the hybrid inorganic–organic phases. Mutual relations between the host and organic guests lead to a specific ordering of molecular species between the host layers, and their effect on the electronic structure of the host will be also argued. A brief description of a critical assessment of the association of the most effective chemical and electrochemical methods, which lead to the preparation of nanosized/microsized powders and single crystals of molecularly intercalated phases, with the ease of preparation of phase pure materials, crystal sizes, and the morphology of final products is given together with a discussion of the stability of the intercalated materials connected with the volatility of organic solvents and a possible degradation of host materials.


Langmuir ◽  
2020 ◽  
Vol 36 (38) ◽  
pp. 11383-11392 ◽  
Author(s):  
Ilya G. Shenderovich
Keyword(s):  

2020 ◽  
Vol 49 (12) ◽  
pp. 3834-3862 ◽  
Author(s):  
Arturo Blanco-Gómez ◽  
Pablo Cortón ◽  
Liliana Barravecchia ◽  
Iago Neira ◽  
Elena Pazos ◽  
...  

Synthetic supramolecular chemistry pursues not only the construction of new matter, but also control over its inherently dynamic behaviour.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 736 ◽  
Author(s):  
Aurelija Smalenskaite ◽  
Lina Pavasaryte ◽  
Thomas Yang ◽  
Aivaras Kareiva

The Mg3/Al and Mg3/Al0.99Eu0.01 layered double hydroxides (LDHs) were fabricated using a sol-gel chemistry approach and intercalated with different anions through ion exchange procedure. The influence of the origin of organic anion (oxalate, laurate, malonate, succinate, tartrate, benzoate, 1,3,5-benzentricarboxylate (BTC), 4-methylbenzoate (MB), 4-dimethylaminobenzoate (DMB) and 4-biphenylacetonate (BPhAc)) on the evolution of the chemical composition of the inorganic-organic LDHs system has been investigated. The obtained results indicated that the type and arrangement of organic guests between layers of the LDHs influence Eu3+ luminescence in the synthesized different hybrid inorganic–organic matrixes. For the characterization of synthesis products X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS), and scanning electron microscopy (SEM), were used.


RSC Advances ◽  
2019 ◽  
Vol 9 (65) ◽  
pp. 37778-37787 ◽  
Author(s):  
Askar K. Gatiatulin ◽  
Viktoria Yu. Osel'skaya ◽  
Marat A. Ziganshin ◽  
Valery V. Gorbatchuk

The hydration level and hydration history of alpha-cyclodextrin significantly affects its structure and inclusion capacity for organic guests.


2018 ◽  
Vol 14 ◽  
pp. 1498-1507 ◽  
Author(s):  
Alberto Spinella ◽  
Marco Russo ◽  
Antonella Di Vincenzo ◽  
Delia Chillura Martino ◽  
Paolo Lo Meo

New calixarene-based nanosponges (CaNSs), i.e., hyper-reticulated polymers constituted by calixarene monomer units joined by means of bis(1,2,3-trialzolyl)alkyl linkers, were synthesized, characterized and subjected to preliminary tests to assess their supramolecular absorption abilities towards a set of suitable organic guests, selected as pollutant models. The synthesis was accomplished by means of a CuAAC reaction between a tetrakis(propargyloxy)calix[4]arene and an alkyl diazide. The formation of the polymeric network was assessed by means of FTIR and 13C{1H} CP-MAS solid-state NMR techniques, whereas morphological characterization was provided by SEM microghaphy. The materials were proved to possess pH-dependent sequestration abilities, due to the presence of the weakly basic triazole linkers. Sequestration efficiency indeed depends on the effective occurrence of both electrostatic and hydrophobic interactions between the guest and the polymer lattice. Thus, our CaNS nanosponges can be considered as a new class of purely synthetic smart absorbent materials.


2018 ◽  
Vol 122 (13) ◽  
pp. 7249-7259 ◽  
Author(s):  
Matteo Ardit ◽  
Annalisa Martucci ◽  
Luisa Pasti ◽  
Elisa Rodeghero ◽  
Giada Beltrami ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document