Experimental Electron Density of 1-Phenyl-4-nitroimidazole and Topological Analysis of C−H···O and C−H···N Hydrogen Bonds

2002 ◽  
Vol 106 (14) ◽  
pp. 3706-3714 ◽  
Author(s):  
M. Kubicki ◽  
T. Borowiak ◽  
G. Dutkiewicz ◽  
M. Souhassou ◽  
C. Jelsch ◽  
...  
1999 ◽  
Vol 55 (4) ◽  
pp. 563-572 ◽  
Author(s):  
E. Espinosa ◽  
M. Souhassou ◽  
H. Lachekar ◽  
C. Lecomte

Topological analysis of the experimental electron density ρ(r) in hydrogen-bonding regions has been carried out for a large number of organic compounds using different multipole models and techniques. Relevant systematic relationships between topological properties at the critical points and the usual geometric parameters are pointed out. Results involving X-ray data only and joint X-ray and neutron data, as well as special hydrogen bonding cases (symmetric, bifurcated, peptide bonds, etc.) are included and analysed in the same framework. A new classification of hydrogen bonds using the positive curvature of the electron density at the critical point [\lambda_3({\bf r}_{\rm CP})] is proposed.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Christopher G. Gianopoulos ◽  
Zhijie Chua ◽  
Vladimir V. Zhurov ◽  
Charles A. Seipp ◽  
Xiaoping Wang ◽  
...  

Chemical bonding and all intermolecular interactions in the highly insoluble carbonate salt of a 2,6-pyridine-bis(iminoguanidine), (PyBIGH2)(CO3)(H2O)4, recently employed in the direct air capture of CO2 via crystallization, have been analyzed within the framework of the quantum theory of atoms in molecules (QTAIM) based on the experimental electron density derived from X-ray diffraction data obtained at 20 K. Accurate hydrogen positions were included based on an analogous neutron diffraction study at 100 K. Topological features of the covalent bonds demonstrate the presence of multiple bonds of various orders within the PyBIGH2 2+ cation. Strong hydrogen bonds define ribbons comprising carbonate anions and water molecules. These ribbons are linked to stacks of essentially planar dications via hydrogen bonds from the guanidinium moieties and an additional one to the pyridine nitrogen. The linking hydrogen bonds are approximately perpendicular to the anion–water ribbons. The observation of these putative interactions provided motivation to characterize them by topological analysis of the total electron density. Thus, all hydrogen bonds have been characterized by the properties of their (3,−1) bond critical points. Weaker interactions between the PyBIGH2 2+ cations have similarly been characterized. Integrated atomic charges are also reported. A small amount of cocrystallized hydroxide ion (∼2%) was also detected in both the X-ray and neutron data, and included in the multipole model for the electron-density refinement. The small amount of additional H+ required for charge balance was not detected in either the X-ray or the neutron data. The results are discussed in the context of the unusually low aqueous solubility of (PyBIGH2)(CO3)(H2O)4 and its ability to sequester atmospheric CO2.


2018 ◽  
Vol 233 (9-10) ◽  
pp. 745-752
Author(s):  
Peter Herich ◽  
Lenka Kucková ◽  
Jan Moncol ◽  
Jozef Kožíšek

Abstract An experimental electronic structure of bis(clonixato)bis(ethanol) bis(imidazole)copper(II) complex, [Cu(cln)2(im)2(EtOH)2] (cln=clonixato, im=imidazole) (1) has been obtained from single-crystal X-ray diffraction data collected at 100 K using an Incoatec IμS Ag microfocus source. Metal-ligand (ML) bonds and hydrogen bonds (HBs) have been analysed using topological analysis of the experimental electron density with the atoms in molecules (AIM) approach. The central copper atom is octahedrally coordinated by two oxygen atoms from two clonixato anions and two nitrogen atoms from two imidazole ligands in equatorial plane. In axial positions are two oxygen atoms from two ethanol molecules. AIM analysis establishes that the central copper atom is bonded more strongly to the clonixato anion that to the imidazole or ethanol molecules. AIM analysis of two intramolecular and one intermolecular hydrogen bonds permits to estimate their strength. We show that the hydrogen bonds are strong enough to protect the molecule from decomposition in solvent media and to disable the more reactive imidazole-Cu-clonixato complex from interacting with e.g. a macromolecule. The electrostatic potential of the complex shows a highly positive value on the central atom, so the complex is highly reactive in an interaction with negative ligands.


2021 ◽  
pp. 1-1
Author(s):  
Rajesh Dutta ◽  
Henrik Thoma ◽  
Dmitry Chernyshov ◽  
Balint Nafradi ◽  
Takatsugu Masuda ◽  
...  

2006 ◽  
Vol 84 (5) ◽  
pp. 804-811 ◽  
Author(s):  
David Wolstenholme ◽  
Manuel AS Aquino ◽  
T Stanley Cameron ◽  
Joseph D Ferrara ◽  
Katherine N Robertson

The tetraphenylphosphonium squarate salt crystallizes with a number of diverse interactions, which all have the potential to be classified as hydrogen bonds. The squarate anions are found as dimers linked by O-H···O interactions. The multipole refinement of the tetraphenylphosphonium squarate was performed using the Hansen–Coppens model followed by topological analysis of its intermolecular interactions. A total of 28 interactions were found among the symmetry related molecules, which include a number of C-H···Cπ, C-H···O, and C-H···H-C interactions, along with the O-H···O interaction. With the criteria for hydrogen bonding proposed by Popelier and Koch, it is possible to determine which of these interactions are hydrogen bonds and which are van der Waals interactions. Both linear and exponentially dependent correlations can be seen for the properties of the bond critical points involving the intermolecular interactions that fulfill these criteria. All this leads to a better understanding of the role that hydrogen bonds play in the formation of small organic compounds.Key words: electron density, multiple refinement, hydrogen bonds.


2009 ◽  
Vol 65 (5) ◽  
pp. 600-611 ◽  
Author(s):  
Ruimin Wang ◽  
Christian W. Lehmann ◽  
Ulli Englert

The experimental electron-density distributions in crystals of five chain polymers [M(μ-X)2(py)2] (M = Zn, Cd; X = Cl, Br; py = 3,5-substituted pyridine) have been obtained from high-resolution X-ray diffraction data sets (sin θ/λ > 1.1 Å−1) at 100 K. Topological analyses following Bader's `Atoms in Molecules' approach not only confirmed the existence of (3, −1) critical points for the chemically reasonable and presumably strong covalent and coordinative bonds, but also for four different secondary interactions which are expected to play a role in stabilizing the polymeric structures which are unusual for Zn as the metal center. These weaker contacts comprise intra- and inter-strand C—H...X—M hydrogen bonds on the one hand and C—X...X—C interhalogen contacts on the other hand. According to the experimental electron-density studies, the non-classical hydrogen bonds are associated with higher electron density in the (3, −1) critical points than the halogen bonds and hence are the dominant interactions both with respect to intra- and inter-chain contacts.


2005 ◽  
Vol 61 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Adam I. Stash ◽  
Kiyoaki Tanaka ◽  
Kazunari Shiozawa ◽  
Hitoshi Makino ◽  
Vladimir G. Tsirelson

A topological analysis of the experimental electron density in racemic ethylenebis(1-indenyl)zirconium dichloride, C20H16Cl2Zr, measured at 100 (1) K, has been performed. The atomic charges calculated by the numerical integration of the electron density over the zero-flux atomic basins demonstrate the charge transfer of 2.25 e from the Zr atom to the two indenyl ligands (0.19 e to each) and two Cl atoms (0.93 e to each). All the atomic interactions were quantitatively characterized in terms of the electron density and the electronic energy-density features at the bond critical points. The Zr—C2 bond paths significantly curved towards the C1—C2 bond were found; no other bond paths connecting the Zr atom and indenyl ligand were located. At the same time, the π-electrons of the C1—C2 bond are significantly involved in the metal–ligand interaction. The electron density features indicate that the indenyl coordination can be approximately described as η1 with slippage towards η2. The `ligand-opposed' charge concentrations around the Zr atom were revealed using the Laplacian of the electron density and the one-particle potential; they were linked to the orbital representations. Bonds in the indenyl ligand were characterized using the Cioslowski–Mixon bond-order indices calculated directly from the experimental electron density.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 223
Author(s):  
Anita M. Grześkiewicz ◽  
Maciej Kubicki

High-quality crystals of a certain polymorphic form of thiobarbituric acid containing both keto and enol tautomers in the asymmetric unit were obtained. High-resolution X-ray diffraction data up to sinθ/λ = 1.0 Å−1 were collected and subsequently successfully used for the refining of the multipolar model of electron density distribution. The use of a crystal containing both ketone and enol forms allowed a direct comparison of the topological analysis results and a closer look at the differences between these two forms. The similarities and differences between the deformation densities, electrostatic potentials, Laplacian maps and bond characteristics of the tautomers were analysed. Additionally, the spectrum of the intermolecular interactions was identified and studied from classical, relatively strong N-H···O and O-H···O hydrogen bonds through weaker N-H···S hydrogen bonds to weak interactions (for instance, C-H···O, C-H···S and N···O). The results of these studies point toward the importance of including both the geometrical features and the details of the electron density distribution in the analysis of such weak interactions.


1999 ◽  
Vol 32 (2) ◽  
pp. 210-217 ◽  
Author(s):  
Mohamed Souhassou ◽  
Robert H. Blessing

Practical computing algorithms are described for analysing the topology of experimental electron density distributions represented as either three-dimensional grid densities or multipolar pseudoatom superpositions. The algorithms are implemented in the programNEWPROP, results from which are illustrated with applications to twoN-acetyl,C-methylamide blocked amino acid crystal structures.


2005 ◽  
Vol 61 (4) ◽  
pp. 443-448 ◽  
Author(s):  
S. Scheins ◽  
M. Messerschmidt ◽  
P. Luger

The electron density distribution of morphine hydrate has been determined from high-resolution single-crystal X-ray diffraction measurements at 25 K. A topological analysis was applied and, in order to analyze the submolecular transferability based on an experimental electron density, a partitioning of the molecule into atomic regions was carried out, making use of Bader's zero-flux surfaces to yield atomic volumes and charges. The properties obtained were compared with the theoretical calculations of smaller fragment molecules, from which the complete morphine molecule can be reconstructed, and with theoretical studies of another opiate, Oripavine PEO, reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document