Experimental Observation of Anharmonic Coupling of the Heme-Doming and Iron−Ligand Out-of-Plane Vibrational Modes Confirmed by Density Functional Theory

2002 ◽  
Vol 106 (44) ◽  
pp. 11641-11646 ◽  
Author(s):  
Stefan Franzen ◽  
Klaus Fritsch ◽  
Scott H. Brewer
Author(s):  
Li-Ren Ng ◽  
Guan-Fu Chen ◽  
Shi-Hsin Lin

We calculated the piezoelectric properties of asymmetrically defected MoS2 with density functional theory. By creating uneven numbers of defects on the either sides of two-dimensional MoS2, the out-of-plane centrosym- metry...


2020 ◽  
Vol 22 (42) ◽  
pp. 24471-24479 ◽  
Author(s):  
Asadollah Bafekry ◽  
Catherine Stampfl ◽  
Chuong Nguyen ◽  
Mitra Ghergherehchi ◽  
Bohayra Mortazavi

Density functional theory calculations are performed in order to study the structural and electronic properties of monolayer Pt2HgSe3. Effects of uniaxial and biaxial strain, layer thickness, electric field and out-of-plane pressure on the electronic properties are systematically investigated.


2020 ◽  
Vol 22 (35) ◽  
pp. 19672-19679 ◽  
Author(s):  
A. D. Squires ◽  
Adam J. Zaczek ◽  
R. A. Lewis ◽  
Timothy M. Korter

New spectral features and anomalous shifting of vibrational modes of beta quinacridone are revealed, unusual thermal contraction the likely origin.


Author(s):  
Tanveer Hasan ◽  
P. K. Singh

This work deals with the vibrational spectroscopy of Ethyl benzoate (C9H10O2). The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) using standard HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods and basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.


2012 ◽  
Vol 23 (08) ◽  
pp. 1240001 ◽  
Author(s):  
V. ALVIN SHUBERT ◽  
STEVEN P. LEWIS

Niobium carbide nanocrystals of ~1:1 stoichiometry have recently been observed for particle sizes ranging from Nb4C4 to Nb50C50 . Infrared (IR) spectroscopic measurements show that a new band of IR vibrational modes appears with increasing particle size at Nb9C9 . Using density-functional theory, we show that the vibrational modes in the new band involve structural features present only in nanocrystals with three or more atomic layers in every direction. The Nb9C9 nanocrystal is right at this structural threshold.


Sign in / Sign up

Export Citation Format

Share Document