Kinetics of N2O5Hydrolysis on Secondary Organic Aerosol and Mixed Ammonium Bisulfate−Secondary Organic Aerosol Particles

2010 ◽  
Vol 114 (50) ◽  
pp. 13113-13121 ◽  
Author(s):  
Egda N. Escorcia ◽  
Steven J. Sjostedt ◽  
Jonathan P. D. Abbatt
Author(s):  
Matus E. Diveky ◽  
Michael J. Gleichweit ◽  
Sandra Roy ◽  
Ruth Signorell

2013 ◽  
Vol 15 (8) ◽  
pp. 2983 ◽  
Author(s):  
Evan Abramson ◽  
Dan Imre ◽  
Josef Beránek ◽  
Jacqueline Wilson ◽  
Alla Zelenyuk

2016 ◽  
Vol 16 (3) ◽  
pp. 1417-1431 ◽  
Author(s):  
Y. S. La ◽  
M. Camredon ◽  
P. J. Ziemann ◽  
R. Valorso ◽  
A. Matsunaga ◽  
...  

Abstract. Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.


2008 ◽  
Vol 42 (27) ◽  
pp. 6710-6720 ◽  
Author(s):  
Charles L. Blanchard ◽  
George M. Hidy ◽  
Shelley Tanenbaum ◽  
Eric Edgerton ◽  
Benjamin Hartsell ◽  
...  

2018 ◽  
Author(s):  
Wiebke Frey ◽  
Dawei Hu ◽  
James Dorsey ◽  
M. Rami Alfarra ◽  
Aki Pajunoja ◽  
...  

Abstract. Secondary Organic Aerosol (SOA) particles have been found to be efficient ice nucleating particles under the cold conditions of (tropical) upper tropospheric cirrus clouds. Whether they also are efficient at initiating freezing at slightly warmer conditions as found in mixed phase clouds remains undetermined. Here, we study the ice nucleating ability of photo-chemically produced SOA particles with the combination of the Manchester Aerosol and Ice Cloud Chambers. Three SOA systems were tested resembling biogenic/anthropogenic particles and particles of different phase state. After the aerosol particles were formed, they were transferred into the cloud chamber where subsequent quasi-adiabatic cloud evacuations were performed. Additionally, the ice forming abilities of ammonium sulfate and kaolinite were investigated as a reference to test the experimental setup. Clouds were formed in the temperature range of −20 °C to −28.6 °C. Only the reference experiment using dust particles showed evidence of ice nucleation. No ice particles were observed in any other experiment. Thus, we conclude that SOA particles produced under the conditions of the reported experiments are not efficient ice nucleating particles starting at liquid saturation under mixed-phase cloud conditions.


Nature ◽  
2010 ◽  
Vol 467 (7317) ◽  
pp. 824-827 ◽  
Author(s):  
Annele Virtanen ◽  
Jorma Joutsensaari ◽  
Thomas Koop ◽  
Jonna Kannosto ◽  
Pasi Yli-Pirilä ◽  
...  

2016 ◽  
Author(s):  
Pascale S. J. Lakey ◽  
Thomas Berkemeier ◽  
Manuel Krapf ◽  
Josef Dommen ◽  
Sarah S. Steimer ◽  
...  

Abstract. We report the first measurements of HO2 uptake coefficients, γ, for secondary organic aerosol particles (SOA) and for the well-studied model compound sucrose which was doped with copper. Above 65 % relative humidity (RH), γ for copper doped sucrose aerosol particles equalled the surface mass accommodation coefficient α = 0.22 ± 0.06 but decreased to γ = 0.012 ± 0.007 upon decreasing the RH to 17 %. The trend of γ with RH can be explained by an increase in aerosol viscosity, as demonstrated using the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB). SOA from two different precursors, α-pinene and 1,3,5- trimethylbenzene (TMB), was investigated, yielding small uptake coefficients of γ < 0.001 and γ = 0.004 ± 0.002, respectively. It is postulated that the larger values measured for TMB derived SOA compared to α-pinene derived SOA are either due to differing viscosity, a different liquid water content of the aerosol particles or a HO2 + RO2 reaction occurring within the aerosol particles.


Sign in / Sign up

Export Citation Format

Share Document