Characterization of Amorphized Zeolite A by Combining High-Energy X-ray Diffraction and High-Resolution Transmission Electron Microscopy

2012 ◽  
Vol 116 (48) ◽  
pp. 25293-25299 ◽  
Author(s):  
Kaku Sato ◽  
Toru Wakihara ◽  
Shinji Kohara ◽  
Koji Ohara ◽  
Junichi Tatami ◽  
...  
2005 ◽  
Vol 19 (15n17) ◽  
pp. 2508-2513 ◽  
Author(s):  
JIANMIN ZHU ◽  
SHISONG HUANG ◽  
GUOBIN MA ◽  
NAIBEN MING

By means of sonochemical method, Fe 3 O 4 and ZnFe 2 O 4 nanocrystallines can be synthesized from FeCl 2/ urea and ZnCl 2/ FeCl 2/ urea in water. The products were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) as well as selected area electron diffraction (SAED). Special attention was paid to the microstructure of the nanocrystallines using high-resolution transmission electron microscopy (HREM). Probable mechanisms for the sonochemical formation of Fe 3 O 4 and ZnFe 2 O 4 nanocrystallines are discussed.


2008 ◽  
Vol 1108 ◽  
Author(s):  
Costel Constantin ◽  
kai sun ◽  
Randall M Feenstra

AbstractIn this work we explore both the initial nucleation and the stoichiometry of rutile-TiO2(001) grown on wurtzite GaN(0001) by radio-frequency O2-plasma molecular beam epitaxy. Two studies are performed; in the first, the dependence of the growth on stoichiometry (Ti-rich and O-rich) is observed using reflection high energy electron diffraction and high resolution transmission electron microscopy. In the second study we examine the effect of different initial nucleation surfaces (i.e. Ga-terminated and excess Ga-terminated) and compare the interfaces and bulk crystallinity of the TiO2(001) films grown on top of these surfaces. High-resolution transmission electron microscopy and x-ray diffraction measurements show a better interface for TiO2(001)/Ga-terminated - GaN(0001) as compared to the TiO2(001)/excess Ga-terminated- GaN(0001).


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document