Chaotic and Periodic Potential Oscillations in Formaldehyde Oxidation

1998 ◽  
Vol 102 (38) ◽  
pp. 7343-7352 ◽  
Author(s):  
Hiroshi Okamoto ◽  
Naoki Tanaka ◽  
Masayoshi Naito
1990 ◽  
Vol 55 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Ivan Halaša ◽  
Milica Miadoková

The authors investigated periodic potential changes measured on oriented sections of Al single crystals during spontaneous dissolution in dilute aqueous solutions of KOH, with the aim to find optimum conditions for the formation of potential oscillations. It was found that this phenomenon is related with the kinetics of the reaction investigated, whose rate also changed periodically. The mechanism of the oscillations is discussed in view of the experimental findings.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 461-474 ◽  
Author(s):  
FELIX MÜLLER ◽  
PAWEL ROMANCZUK ◽  
LUTZ SCHIMANSKY-GEIER

We study the motion of overdamped Brownian particles in a periodic potential with a temporally oscillating amplitude. First we investigate diffusive motion in the untitled potential. Furthermore, if a constant force is applied, the oscillating potential induces a synchronized motion. The deterministic dynamics becomes in resonance with the potential oscillations. This dynamics gives rise to a transport with extremely low dispersion. We distinguish slow and fast oscillatory driving and give analytical expressions for the mean velocity and effective diffusion.


1979 ◽  
Vol 81 (1) ◽  
pp. 217-279 ◽  
Author(s):  
M. J. Berridge ◽  
P. E. Rapp

This review attempts to survey in a uniform manner the available evidence concerning the generation and behaviour of several well-investigated cellular oscillators. Members of two broad classifications are contrasted: (i) cytoplasmic oscillations, where the periodic phenomena is generated by an instability pathway and (ii) membrane oscillators in which a membrane potential rhythm is generated at the membrane. Interactions between the cytoplasmic and membrane compartments are considered and the effects of these interactions on oscillatory behaviour is discussed. Because of their biological importance and the greater body of experimental results, particular attention is directed to a study of membrane potential oscillations. These systems can be approximately classified in two groups: (i) systems in which a periodic potential results from oscillatory changes in permeability and (ii) systems in which potential oscillations result from the periodic activity of an electrogenic pump. The examples considered include the glycolytic oscillator, oscillations in vein contraction in the slime mould Physarum polycephalum, rhythmic aggregation in Dictyostelium discoideum, neural oscillators, the periodic potential in Purkinje fibres and the sino-atrial node and rhythmic behaviour in smooth muscle. Questions considered include the generation of periodic activity, the modulation of the oscillation by drugs and other metabolic and membrane effectors and the question of the functional role of these oscillations.


2020 ◽  
Author(s):  
Brittany Benlian ◽  
Pavel Klier ◽  
Kayli Martinez ◽  
Marie Schwinn ◽  
Thomas Kirkland ◽  
...  

<p>We report a small molecule enzyme pair for optical voltage sensing via quenching of bioluminescence. This <u>Q</u>uenching <u>B</u>ioluminescent V<u>olt</u>age Indicator, or Q-BOLT, pairs the dark absorbing, voltage-sensitive dipicrylamine with membrane-localized bioluminescence from the luciferase NanoLuc (NLuc). As a result, bioluminescence is quenched through resonance energy transfer (QRET) as a function of membrane potential. Fusion of HaloTag to NLuc creates a two-acceptor bioluminescence resonance energy transfer (BRET) system when a tetramethylrhodamine (TMR) HaloTag ligand is ligated to HaloTag. In this mode, Q-BOLT is capable of providing direct visualization of changes in membrane potential in live cells via three distinct readouts: change in QRET, BRET, and the ratio between bioluminescence emission and BRET. Q-BOLT can provide up to a 29% change in bioluminescence (ΔBL/BL) and >100% ΔBRET/BRET per 100 mV change in HEK 293T cells, without the need for excitation light. In cardiac monolayers derived from human induced pluripotent stem cells (hiPSC), Q-BOLT readily reports on membrane potential oscillations. Q-BOLT is the first example of a hybrid small molecule – protein voltage indicator that does not require excitation light and may be useful in contexts where excitation light is limiting.</p> <p> </p>


2020 ◽  
Author(s):  
Brittany Benlian ◽  
Pavel Klier ◽  
Kayli Martinez ◽  
Marie Schwinn ◽  
Thomas Kirkland ◽  
...  

<p>We report a small molecule enzyme pair for optical voltage sensing via quenching of bioluminescence. This <u>Q</u>uenching <u>B</u>ioluminescent V<u>olt</u>age Indicator, or Q-BOLT, pairs the dark absorbing, voltage-sensitive dipicrylamine with membrane-localized bioluminescence from the luciferase NanoLuc (NLuc). As a result, bioluminescence is quenched through resonance energy transfer (QRET) as a function of membrane potential. Fusion of HaloTag to NLuc creates a two-acceptor bioluminescence resonance energy transfer (BRET) system when a tetramethylrhodamine (TMR) HaloTag ligand is ligated to HaloTag. In this mode, Q-BOLT is capable of providing direct visualization of changes in membrane potential in live cells via three distinct readouts: change in QRET, BRET, and the ratio between bioluminescence emission and BRET. Q-BOLT can provide up to a 29% change in bioluminescence (ΔBL/BL) and >100% ΔBRET/BRET per 100 mV change in HEK 293T cells, without the need for excitation light. In cardiac monolayers derived from human induced pluripotent stem cells (hiPSC), Q-BOLT readily reports on membrane potential oscillations. Q-BOLT is the first example of a hybrid small molecule – protein voltage indicator that does not require excitation light and may be useful in contexts where excitation light is limiting.</p> <p> </p>


1980 ◽  
Vol 45 (1) ◽  
pp. 169-178 ◽  
Author(s):  
František Opekar ◽  
Karel Holub

The galvanostatic dissolution of mercury from the surface of glassy carbon into a thiocyanate solution proceeds in accord with theoretical assumptions, as manifested by the constant product of the dissolution current and transition time. Under certain relations between the amount of oxidised mercury and concentration of thiocyanate at the electrode surface, however, a small part of the mercury dissolves at more positive potentials than correspond to the Nernst equation. This dissolution can be accompanied by potential oscillations. The anomalous behaviour is elucidated by the concept about coverage of a certain part of mercury with a film of sparingly soluble compounds of SCN- ions with mercury. This film is formed at the end of the galvanostatic dissolution on certain places of the electrode surface covered with mercury droplets, where SCN- ions are much exhausted as a result of a high current density.


Sign in / Sign up

Export Citation Format

Share Document