Efficient Conversion of Nitrogen Dioxide into Nitrous Acid on Ice Surfaces

2010 ◽  
Vol 1 (20) ◽  
pp. 3085-3089 ◽  
Author(s):  
Sun-Kyung Kim ◽  
Heon Kang
Author(s):  
Aurélie Marion ◽  
Julien Morin ◽  
Elena Ormeno ◽  
Sylvie Dupouyet ◽  
Barbara D'Anna ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 423-440 ◽  
Author(s):  
K.-E. Min ◽  
R. A. Washenfelder ◽  
W. P. Dubé ◽  
A. O. Langford ◽  
P. M. Edwards ◽  
...  

Abstract. We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361–389 and 438–468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.


2021 ◽  
Vol 193 ◽  
pp. 110543
Author(s):  
Aurélie Marion ◽  
Julien Morin ◽  
Adrien Gandolfo ◽  
Elena Ormeño ◽  
Barbara D'Anna ◽  
...  

2021 ◽  
Author(s):  
Shuping Zhang ◽  
Golam Sarwar ◽  
Jia Xing ◽  
Biwu Chu ◽  
Chaoyang Xue ◽  
...  

Abstract. We compare Community Multiscale Air Quality (CMAQ) model predictions with measured nitrous acid (HONO) concentrations in Beijing, China for December 2015. The model with the existing HONO chemistry in CMAQ severely under-estimates the observed HONO concentrations with a normalized mean bias of −97 %. We revise the HONO chemistry in the model by implementing six additional heterogeneous reactions in the model: reaction of nitrogen dioxide (NO2) on ground surfaces, reaction of NO2 on aerosol surfaces, reaction of NO2 on soot surfaces, photolysis of aerosol nitrate, nitric acid displacement reaction, and hydrochloric acid displacement reaction. The model with the revised chemistry substantially increases HONO predictions and improves the comparison with observed data with a normalized mean bias of −5 %. The photolysis of HONO enhances day-time hydroxyl radical by almost a factor of two. The enhanced hydroxyl radical concentrations compare favorably with observed data and produce additional sulfate via the reaction with sulfur dioxide, aerosol nitrate via the reaction with nitrogen dioxide, and secondary organic aerosols via the reactions with volatile organic compounds. The additional sulfate stemming from revised HONO chemistry improves the comparison with observed concentration; however, it does not close the gap between model prediction and the observation during polluted days.


Sign in / Sign up

Export Citation Format

Share Document