Investigation of the Stability of Dimeric Cationic Surfactant/DNA Complexes and Their Interaction with Model Membrane Systems

Langmuir ◽  
2002 ◽  
Vol 18 (26) ◽  
pp. 10340-10347 ◽  
Author(s):  
David Llères ◽  
Jean-Pierre Clamme ◽  
Emmanuel Dauty ◽  
Thomas Blessing ◽  
Guruswamy Krishnamoorthy ◽  
...  
1993 ◽  
Vol 3 (3) ◽  
pp. 377-408 ◽  
Author(s):  
Scott C. Hartsel ◽  
Christopher Hatch ◽  
Woubeshet Ayenew

2019 ◽  
Vol 35 (5) ◽  
pp. 1508-1513
Author(s):  
Noura Yahya El Mehbad

This paper aims to investigate removal of aromatic and heavy metals compounds from fuels using cement kiln dust, and a cationic surfactant. The effect of a cationic surfactant and the composition of kiln dust on the stability of fuel was studied. The optimum conditions of adsorption were investigated. The stability of fuels was improved after adsorption because of the absorption of heavy metals, which act as catalysts. The concentrations of kiln dust and additives are effective for the absorption of heteroatoms of polar and nonpolar molecules. The addition of different concentrations of the cationic surfactant to kiln dust enhances the removal of polar molecules in fuel. The relation between the efficiency of the cationic surfactant and the enhanced removal of polar molecules was established. This study suggests a new mechanism to remove polar molecules according to the structure of the additive. Several parameters that affect the performance of the removal process were investigated under all optimum conditions. A complete chemical analysis of the fuels before and after treatment was performed, and the stability of the fuel was evaluated at different conditions. The prepared additive could enhance the oil quality and is environmentally safe. The adsorption behaviour of kiln dust was investigated to find a new mechanism of its efficiency. The results confirm the role of the cationic surfactant in the purification of fuels and the effectiveness of kiln dust in improving the stability of fuels, which depend on the concentration of the cationic surfactant and the nature of the kiln dust.


2018 ◽  
Vol 114 (3) ◽  
pp. 244a
Author(s):  
Loredana Casalis ◽  
Fabio Perissinotto ◽  
Denis Scaini

1999 ◽  
Vol 19 (11) ◽  
pp. 7501-7510 ◽  
Author(s):  
Andrei L. Okorokov ◽  
Jo Milner

ABSTRACT Interaction with DNA is essential for the tumor suppressor functions of p53. We now show, for the first time, that the interaction of p53 with DNA can be stabilized by small molecules, such as ADP and dADP. Our results also indicate an ATP/ADP molecular switch mechanism which determines the off-on states for p53-DNA binding. This ATP/ADP molecular switch requires dimer-dimer interaction of the p53 tetramer. Dissociation of p53-DNA complexes by ATP is independent of ATP hydrolysis. Low-level ATPase activity is nonetheless associated with ATP-p53 interaction and may serve to regenerate ADP-p53, thus recycling the high-affinity DNA binding form of p53. The ATP/ADP regulatory mechanism applies to two distinct types of p53 interaction with DNA, namely, sequence-specific DNA binding (via the core domain of the p53 protein) and binding to sites of DNA damage (via the C-terminal domain). Further studies indicate that ADP not only stabilizes p53-DNA complexes but also renders the complexes susceptible to dissociation by specific p53 binding proteins. We propose a model in which the DNA binding functions of p53 are regulated by an ATP/ADP molecular switch, and we suggest that this mechanism may function during the cellular response to DNA damage.


Sign in / Sign up

Export Citation Format

Share Document