scholarly journals JKR Theory for the Stick–Slip Peeling and Adhesion Hysteresis of Gecko Mimetic Patterned Surfaces with a Smooth Glass Surface

Langmuir ◽  
2013 ◽  
Vol 29 (48) ◽  
pp. 15006-15012 ◽  
Author(s):  
Saurabh Das ◽  
Sathya Chary ◽  
Jing Yu ◽  
John Tamelier ◽  
Kimberly L. Turner ◽  
...  
2008 ◽  
Vol 605 ◽  
pp. 59-78 ◽  
Author(s):  
XIAO-PING WANG ◽  
TIEZHENG QIAN ◽  
PING SHENG

We simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition. The motion of the fluid–fluid interface in confined immiscible two-phase flows is modulated by the chemical pattern on the top and bottom surfaces, leading to a stick–slip behaviour of the contact line. The extra dissipation induced by this oscillatory contact-line motion is significant and increases rapidly with the wettability contrast of the pattern. A critical value of the wettability contrast is identified above which the effect of diffusion becomes important, leading to the interesting behaviour of fluid–fluid interface breaking, with the transport of the non-wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid. Near the critical value, the time-averaged extra dissipation scales as U, the displacement velocity. By decreasing the period of the pattern, we show the solid surface to be characterized by an effective contact angle whose value depends on the material characteristics and composition of the patterned surfaces.


Author(s):  
Boheng Dong ◽  
Fuxian Wang ◽  
Xinya Zhang ◽  
Xiang Jiang

The liquid-vapor phase change lattice Boltzmann method is used to investigate the pinning-depinning mechanism of the contact line during droplet evaporation on the stripe-patterned surfaces in 3D space. Considering the curvature of the contact line and the direction of the unbalanced Young’s force, the local force balance theory near the stripe boundary is proposed to explain the steady state of the droplets on the stripe-patterned surfaces. An equation is proposed to evaluate the characteristic contact angle of the stabilized droplets. During the evaporation of the droplet, the stick-slip-jump behavior and the CCR-Mixed-CCA mode can be well captured by the lattice Boltzmann simulation. When the contact line is pinned to the stripe boundary, the contact line in the direction perpendicular to the stripes is slowly moving while the curvature of the contact line is gradually increasing. The gradually increasing curvature of the contact line accelerates the movement of the contact line, and the final contact line is detached from the stripe boundary. The research results provide theoretical support and guidance for the design, improvement and application of patterned surfaces in the field of micro-fluidic and evaporation heat transfer.


2008 ◽  
Author(s):  
Wei Guo ◽  
Zeng Bo Wang ◽  
Lin Li ◽  
Zhu Liu ◽  
Boris Luk’yanchuk ◽  
...  

2012 ◽  
Vol 17 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Zbigniew Chaniecki ◽  
Krzysztof Grudzień ◽  
Tomasz Jaworski ◽  
Grzegorz Rybak ◽  
Andrzej Romanowski ◽  
...  

Abstract The paper presents results of the scale-up silo flow investigation in based on accelerometer signal analysis and Wi-Fi transmission, performed in distributed laboratory environment. Prepared, by the authors, a set of 8 accelerometers allows to measure a three-dimensional acceleration vector. The accelerometers were located outside silo, on its perimeter. The accelerometers signal changes allowed to analyze dynamic behavior of solid (vibrations/pulsations) at silo wall during discharging process. These dynamic effects are caused by stick-slip friction between the wall and the granular material. Information about the material pulsations and vibrations is crucial for monitoring the interaction between silo construction and particle during flow. Additionally such spatial position of accelerometers sensor allowed to collect information about nonsymmetrical flow inside silo.


Sign in / Sign up

Export Citation Format

Share Document