A Simple Pathway toward Quantitative Modification of Polybutadiene:  A New Approach to Thermoreversible Cross-Linking Rubber Comprising Supramolecular Hydrogen-Bonding Networks

2005 ◽  
Vol 38 (13) ◽  
pp. 5575-5580 ◽  
Author(s):  
Chih-Cheng Peng ◽  
Volker Abetz
2001 ◽  
Vol 34 (26) ◽  
pp. 9201-9204 ◽  
Author(s):  
Keisuke Chino ◽  
Makoto Ashiura

2017 ◽  
Vol 9 (18) ◽  
pp. 15744-15757 ◽  
Author(s):  
Ani Wang ◽  
Ruiqing Fan ◽  
Yuwei Dong ◽  
Yang Song ◽  
Yuze Zhou ◽  
...  

2018 ◽  
Vol 24 (51) ◽  
pp. 13408-13412 ◽  
Author(s):  
Isabel Peña ◽  
Maria Eugenia Sanz ◽  
Elena R. Alonso ◽  
José L. Alonso

2015 ◽  
Vol 71 (4) ◽  
pp. 444-450 ◽  
Author(s):  
Sergey V. Gudkovskikh ◽  
Mikhail V. Kirov

A new approach to the investigation of the proton-disordered structure of clathrate hydrates is presented. This approach is based on topological crystallography. The quotient graphs were built for the unit cells of the cubic structure I and the hexagonal structure H. This is a very convenient way to represent the topology of a hydrogen-bonding network under periodic boundary conditions. The exact proton configuration statistics for the unit cells of structure I and structure H were obtained using the quotient graphs. In addition, the statistical analysis of the proton transfer along hydrogen-bonded chains was carried out.


Small ◽  
2018 ◽  
Vol 14 (38) ◽  
pp. 1802307 ◽  
Author(s):  
Joanna Boucard ◽  
Camille Linot ◽  
Thibaut Blondy ◽  
Steven Nedellec ◽  
Philippe Hulin ◽  
...  

CrystEngComm ◽  
2016 ◽  
Vol 18 (1) ◽  
pp. 62-67
Author(s):  
Yoona Jang ◽  
Seo Yeon Yoo ◽  
Hye Rin Gu ◽  
Yu Jin Lee ◽  
Young Shin Cha ◽  
...  

6-Chloro-9-propyl-purin-2-amine (pr-GCl) forms two-dimensional hydrogen-bonded networks which in turn stack via π–π interactions, leading to the formation of bilayers that can accommodate organic guest molecules.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1882
Author(s):  
Wei Xia ◽  
Yingguo Bai ◽  
Pengjun Shi

Improving the substrate affinity and catalytic efficiency of β-glucosidase is necessary for better performance in the enzymatic saccharification of cellulosic biomass because of its ability to prevent cellobiose inhibition on cellulases. Bgl3A from Talaromyces leycettanus JCM12802, identified in our previous work, was considered a suitable candidate enzyme for efficient cellulose saccharification with higher catalytic efficiency on the natural substrate cellobiose compared with other β-glucosidase but showed insufficient substrate affinity. In this work, hydrophobic stacking interaction and hydrogen-bonding networks in the active center of Bgl3A were analyzed and rationally designed to strengthen substrate binding. Three vital residues, Met36, Phe66, and Glu168, which were supposed to influence substrate binding by stabilizing adjacent binding site, were chosen for mutagenesis. The results indicated that strengthening the hydrophobic interaction between stacking aromatic residue and the substrate, and stabilizing the hydrogen-bonding networks in the binding pocket could contribute to the stabilized substrate combination. Four dominant mutants, M36E, M36N, F66Y, and E168Q with significantly lower Km values and 1.4–2.3-fold catalytic efficiencies, were obtained. These findings may provide a valuable reference for the design of other β-glucosidases and even glycoside hydrolases.


Sign in / Sign up

Export Citation Format

Share Document