A New Concept for Nanoparticle Distribution in SBR/NBR Blend Solution and Films via Molecular Confinement

2008 ◽  
Vol 41 (8) ◽  
pp. 2931-2937 ◽  
Author(s):  
Masayuki Kawazoe ◽  
Hatsuo Ishida

2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.



2015 ◽  
Vol 44 (3) ◽  
pp. 163-168 ◽  
Author(s):  
G. Kourousias ◽  
L. Pascolo ◽  
P. Marmorato ◽  
J. Ponti ◽  
G. Ceccone ◽  
...  


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3263
Author(s):  
Jakub Siegel ◽  
Tatiana Savenkova ◽  
Jana Pryjmaková ◽  
Petr Slepička ◽  
Miroslav Šlouf ◽  
...  

We report on a novel technique of surface texturing of polyethylene terephthalate (PET) foil in the presence of silver nanoparticles (AgNPs). This approach provides a variable surface morphology of PET evenly decorated with AgNPs. Surface texturing occurred in silver nanoparticle colloids of different concentrations under the action of pulse excimer laser. Surface morphology of PET immobilized with AgNPs was observed by AFM and FEGSEM. Atomic concentration of silver was determined by XPS. A presented concentration-controlled procedure of surface texturing of PET in the presence of silver colloids leads to a highly nanoparticle-enriched polymer surface with a variable morphology and uniform nanoparticle distribution.



Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 486
Author(s):  
Mercedes Jiménez-Rosado ◽  
Víctor Perez-Puyana ◽  
Pablo Sánchez-Cid ◽  
Antonio Guerrero ◽  
Alberto Romero

The union of nanoscience (nanofertilization) with controlled release bioplastic systems could be a key factor for the improvement of fertilization in horticulture, avoiding excessive contamination and reducing the price of the products found in the current market. In this context, the objective of this work was to incorporate ZnO nanoparticles in soy protein-based bioplastic processed using injection moulding. Thus, the concentration of ZnO nanoparticles (0 wt%, 1.0 wt%, 2.0 wt%, 4.5 wt%) and mould temperature (70 °C, 90 °C and 110 °C) were evaluated through a mechanical (flexural and tensile properties), morphological (microstructure and nanoparticle distribution) and functional (water uptake capacity, micronutrient release and biodegradability) characterization. The results indicate that these parameters play an important role in the final characteristics of the bioplastics, being able to modify them. Ultimately, this study increases the versatility and functionality of the use of bioplastics and nanofertilization in horticulture, helping to prevent the greatest environmental impact caused.



2007 ◽  
Vol 111 (31) ◽  
pp. 11501-11505 ◽  
Author(s):  
Edmund P. W. Ward ◽  
Timothy J. V. Yates ◽  
José-Jesús Fernández ◽  
David E. W. Vaughan ◽  
Paul A. Midgley


2019 ◽  
Vol 5 (4) ◽  
pp. 361-371 ◽  
Author(s):  
Sajad Keshavarz ◽  
Dariush Sardari

Gold nanoparticles can be used to increase the dose of the tumor due to its high atomic number as well as being free from apparent toxicity. The aim of this study is to evaluate the effect of distribution of gold nanoparticles models, as well as changes in nanoparticle sizes and spectrum of radiation energy along with the effects of nanoparticle penetration into surrounding tissues in dose enhancement factor DEF. Three mathematical models were considered for distribution of gold nanoparticles in the tumor, such as 1-uniform, 2- non-uniform distribution with no penetration margin and 3- non-uniform distribution with penetration margin of 2.7 mm of gold nanoparticles. For this purpose, a cube-shaped water phantom of 50 cm size in each side and a cube with 1 cm side placed at depth of 2 cm below the upper surface of the cubic phantom as the tumor was defined, and then 3 models of nanoparticle distribution were modeled. MCNPX code was used to simulate 3 distribution models. DEF was evaluated for sizes of 20, 25, 30, 50, 70, 90 and 100 nm of gold nanoparticles, and 50, 95, 250 keV and 4 MeV photon energies. In uniform distribution model the maximum DEF was observed at 100 nm and 50 keV being equal to 2.90, in non-uniform distribution with no penetration margin, the maximum DEF was measured at 100 nm and 50 keV being 1.69, and in non-uniform distribution with penetration margin of 2.7 mm, the maximum DEF was measured at 100 nm and 50 keV as 1.38, and the results have been showed that the dose was increased by injecting nanoparticles into the tumor. It is concluded that the highest DEF could be achieved in low energy photons and larger sizes of nanoparticles. Non-uniform distribution of gold nanoparticles can increase the dose and also decrease the DEF in comparison with the uniform distribution. The non-uniform distribution of nanoparticles with penetration margin showed a lower DEF than the non-uniform distribution without any margin and uniform distribution. Meanwhile, utilization of the real X-ray spectrum brought about a smaller DEF in comparison to mono-energetic X-ray photons.



2017 ◽  
Vol 145 ◽  
pp. 105-113 ◽  
Author(s):  
Ziming Cai ◽  
Xiaohui Wang ◽  
Bingcheng Luo ◽  
Wei Hong ◽  
Longwen Wu ◽  
...  


2019 ◽  
Vol 220 ◽  
pp. 01002
Author(s):  
S.M. Arakelian ◽  
A.O. Kucherik ◽  
T.A. Khudaberganov ◽  
D.N. Bukharov

Nanocluster structures can be easily modified in necessary direction and by controlled way in femtonanophotonics experiments. The variation of the key topology parameters can result in new type of the quantum correlation states/size effect for charged particles. In our earlier experiments we studied laser-induced topological nanoclusters structures of different types in thin films with unique phenomena in electrophysics and optics (see [1-3]). A simple 2-steps mechanism for enhancement of quantum behavior (e.g. in electroconductivity) exists for different conditions. First, when inelastic length linelastic > acluster we have no incoherent electron-phonon (e-ph) scattering, i.e. the coherent process takes place. Second, when de Broglie wave length λdB ≡ ℓcoh < Λ, (acluster – cluster size , Λ – spatial period of nanoparticle distribution) the coherent tunneling without loss occurs, and a long-range order with interference of the states takes place in the medium due to lattice structure.



Sign in / Sign up

Export Citation Format

Share Document