scholarly journals Modeling of macroscopic quantum states in functional properties of the laser-induced 4D-topological nanoclusters in thin films on solid surface

2019 ◽  
Vol 220 ◽  
pp. 01002
Author(s):  
S.M. Arakelian ◽  
A.O. Kucherik ◽  
T.A. Khudaberganov ◽  
D.N. Bukharov

Nanocluster structures can be easily modified in necessary direction and by controlled way in femtonanophotonics experiments. The variation of the key topology parameters can result in new type of the quantum correlation states/size effect for charged particles. In our earlier experiments we studied laser-induced topological nanoclusters structures of different types in thin films with unique phenomena in electrophysics and optics (see [1-3]). A simple 2-steps mechanism for enhancement of quantum behavior (e.g. in electroconductivity) exists for different conditions. First, when inelastic length linelastic > acluster we have no incoherent electron-phonon (e-ph) scattering, i.e. the coherent process takes place. Second, when de Broglie wave length λdB ≡ ℓcoh < Λ, (acluster – cluster size , Λ – spatial period of nanoparticle distribution) the coherent tunneling without loss occurs, and a long-range order with interference of the states takes place in the medium due to lattice structure.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hom Kandel ◽  
Milko Iliev ◽  
Nathan Arndt ◽  
Tar-Pin Chen

We performed Raman scattering measurements and a comprehensive study of different types of Raman modes associated with phonon vibrations on pure and Ga, Al, Fe, Co, Ni, and Zn doped (110)-oriented PrBa2Cu3O7 (PBCO) thin films to identify the substitution of Cu (1) or Cu (2) ions in PBCO lattice. In Raman spectrum of (110)–oriented PBCO thin film, we observed four prominent Ag type Raman modes at ∼130 cm−1, ∼150 cm−1, ∼440 cm−1, and ∼520 cm−1 corresponding to Ba, Cu (2), O (2)–O (3) in-phase, and O (4) apical oxygen vibration along c-axis, respectively. The Raman mode of pure PBCO at ∼520 cm−1 softened on Ga, Al, Fe, and Co doped PBCO thin films while it remained unaffected on Zn and Ni doped PBCO thin films. We explain these results in the context of their correlation with Cu (1)–O (4) and Cu (2)–O (4) bond lengths. In addition, we observed a new Raman mode near 610 cm−1 in the Raman spectra of Ga, Al, Fe, and Co doped PBCO thin films, an infrared (IR) active mode that became Raman active when the symmetry was broken at the Cu-O chain site after the partial substitution of Cu (1) ion. Moreover, the “O (2)–O (3) in-phase Raman mode” near 440 cm−1 remained unaffected in Fe, Co, Ga, and Al doped PBCO thin films but softened in Zn and Ni doped PBCO thin films. Based on these results, we argue that Ga, Al, Fe, and Co ions replace Cu (1) ion at the Cu-O chain site, break the crystal symmetry, and produce disorder locally, whereas Zn and Ni ions replace Cu (2) ion at the CuO2 plane of the PBCO lattice structure.


Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


ChemInform ◽  
2003 ◽  
Vol 34 (9) ◽  
Author(s):  
Oh-Shim Joo ◽  
Kwang-Deog Jung ◽  
Sung-Hoon Cho ◽  
Je-Hong Kyoung ◽  
Chang-Kyu Ahn ◽  
...  

2021 ◽  
Vol 51 (1-2) ◽  
pp. 5-14
Author(s):  
Anna-Klara Bojö

The Bodies’ Poetry: Eva Runefelt, Eva Ström and Swedish Poetry in the Late 1970’s In the mid 1970’s a new type of poetry, associated with the body, emerged in Sweden. Especially young women writers appeared to take Swedish poetry in new aesthetic directions, exploring questions regarding experience and language. This article focuses on two prominent writers, Eva Runefelt and Eva Ström, and discusses how their different types of poetry can be said to be a bodies’ poetry, and how it was discussed in contemporary literary critique. It also reflects on why this strand of poetry has been granted such a peripheral place in literary history.


2022 ◽  
pp. 1-36
Author(s):  
Xiaojie Ma ◽  
Luqi Liu ◽  
Zhong Zhang ◽  
Yueguang Wei

Abstract We study the bending stiffness of symmetrically bent circular multilayer van der Waals (vdW) material sheets, which corresponds to the non-isometric configuration in bulge tests. Frenkel sinusoidal function is employed to describe the periodic interlayer tractions due to the lattice structure nature and the bending stiffness of sheets is theoretically extracted via an energetic consideration. Our quantitative prediction shows good agreement with recent experimental results, where the bending stiffness of different types of sheets with the comparable thickness could follow a trend opposite to their Young's moduli. Based on our model, we propose that this trend may experience a transition as the thickness decreases. Apart from the apparent effects of Young's modulus and interlayer shear strength, the interlayer distance is also found to have an important impact on the bending stiffness. In addition, according to our analysis on the size effect, the bending stiffness of such symmetrically bent circular sheets can steadily own a relatively large value, in contrast to the cases of isometric deformations.


2007 ◽  
Vol 201 (15) ◽  
pp. 6631-6634 ◽  
Author(s):  
Junqi Xu ◽  
Huiqing Fan ◽  
Hiroyuki Kousaka ◽  
Noritsugu Umehara ◽  
Weiguo Liu

2016 ◽  
Vol 5 (3) ◽  
pp. 73 ◽  
Author(s):  
Haidar F. AL-Qrimli ◽  
Karam S. Khalid ◽  
Ahmed M. Abdelrhman ◽  
Roaad K. Mohammed A ◽  
Husam M. Hadi

The purpose of this work is to present a clear fundamental thought for designing and investigating straight bevel gear made of composite material. Composite materials have the advantage of being light, producing low noises, and extra loading capacities. Due to these properties, it is highly preferable over conventional materials. A comparison between different types of material used in a gear structure will be shown. The outcome shows that a new form of cheap material may be useful for designing a new type of lighter and stiffer gear, designed for robotic arm applications or any power transmission application.


2020 ◽  
Vol 20 (6) ◽  
pp. 942-957
Author(s):  
Yusuf Izmirlioglu ◽  
Esra Erdem

AbstractWe propose a novel formal framework (called 3D-NCDC-ASP) to represent and reason about cardinal directions between extended objects in 3-dimensional (3D) space, using Answer Set Programming (ASP). 3D-NCDC-ASP extends Cardinal Directional Calculus (CDC) with a new type of default constraints, and NCDC-ASP to 3D. 3D-NCDC-ASP provides a flexible platform offering different types of reasoning: Nonmonotonic reasoning with defaults, checking consistency of a set of constraints on 3D cardinal directions between objects, explaining inconsistencies, and inferring missing CDC relations. We prove the soundness of 3D-NCDC-ASP, and illustrate its usefulness with applications.


2013 ◽  
Vol 53 (14) ◽  
pp. 1-9
Author(s):  
X. Wang ◽  
J. Yu ◽  
H. Dong ◽  
F. Jiang ◽  
Q. Zhu ◽  
...  

1946 ◽  
Vol 19 (4) ◽  
pp. 1085-1087
Author(s):  
Pierre Girard ◽  
Paul Abadie

Abstract The spectra which were studied lie within the region of hertzian frequencies, and can be represented either by dispersion curves showing the dielectric constant of the substance as a function of the frequency (or wave length λ), or by absorption curves showing the loss angle as a function of this frequency. These two types of curves represent the same phenomenon, i.e., orientation of the dipolar molecules in the alternating electric field, in accordance with the theory of Debye. The spectra and their interpretation depend chiefly on whether the molecules are crystalloid with relatively small and similar dimensions, or are colloidal, with large and unequal dimensions. In the first case, the spectra gives evidence chiefly on the form of the molecules and their structural features. Dilution in a nonpolar solvent shows for certain dipolar compounds, e.g., alcohol, considerable deformations, which differ according to the solvent. In the case of colloids, e.g., rubber, which has a permanent moment, the spectra and the meaning of these spectra are far different. In this case the spectra indicate that the absorption and dispersion values in the hertzian region are closely related to the micellar constitution, i.e., to the different types of micelles, to their size, and to the proportion of each type.


Sign in / Sign up

Export Citation Format

Share Document