scholarly journals Computationally Assisted Assignment of Kahalalide Y Configuration Using an NMR-Constrained Conformational Search

2013 ◽  
Vol 76 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Mohamed A. Albadry ◽  
Khaled M. Elokely ◽  
Bin Wang ◽  
John J. Bowling ◽  
Mohamed F. Abdelwahab ◽  
...  
2021 ◽  
Vol 22 (14) ◽  
pp. 7704
Author(s):  
Sayi’Mone Tati ◽  
Laleh Alisaraie

Dynein is a ~1.2 MDa cytoskeletal motor protein that carries organelles via retrograde transport in eukaryotic cells. The motor protein belongs to the ATPase family of proteins associated with diverse cellular activities and plays a critical role in transporting cargoes to the minus end of the microtubules. The motor domain of dynein possesses a hexameric head, where ATP hydrolysis occurs. The presented work analyzes the structure–activity relationship (SAR) of dynapyrazole A and B, as well as ciliobrevin A and D, in their various protonated states and their 46 analogues for their binding in the AAA1 subunit, the leading ATP hydrolytic site of the motor domain. This study exploits in silico methods to look at the analogues’ effects on the functionally essential subsites of the motor domain of dynein 1, since no similar experimental structural data are available. Ciliobrevin and its analogues bind to the ATP motifs of the AAA1, namely, the walker-A (W-A) or P-loop, the walker-B (W-B), and the sensor I and II. Ciliobrevin A shows a better binding affinity than its D analogue. Although the double bond in ciliobrevin A and D was expected to decrease the ligand potency, they show a better affinity to the AAA1 binding site than dynapyrazole A and B, lacking the bond. In addition, protonation of the nitrogen atom in ciliobrevin A and D, as well as dynapyrazole A and B, at the N9 site of ciliobrevin and the N7 of the latter increased their binding affinity. Exploring ciliobrevin A geometrical configuration suggests the E isomer has a superior binding profile over the Z due to binding at the critical ATP motifs. Utilizing the refined structure of the motor domain obtained through protein conformational search in this study exhibits that Arg1852 of the yeast cytoplasmic dynein could involve in the “glutamate switch” mechanism in cytoplasmic dynein 1 in lieu of the conserved Asn in AAA+ protein family.


2019 ◽  
Vol 31 (3) ◽  
pp. 861-875 ◽  
Author(s):  
Adebayo A. Adeniyi ◽  
Cecilia O. Akintayo ◽  
Emmanuel T. Akintayo ◽  
Jeanet Conradie

1994 ◽  
Vol 238 (3) ◽  
pp. 455-465 ◽  
Author(s):  
M. Zacharias ◽  
B.A. Luty ◽  
M.E. Davis ◽  
J.A. McCammon

Author(s):  
Mark Froimowitz ◽  
Douglas J. Gordon ◽  
Adel Moussa ◽  
Reem M. Haidar ◽  
Clifford George

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4409
Author(s):  
Carlo Gatti ◽  
Alessandro Dessì ◽  
Roberto Dallocchio ◽  
Victor Mamane ◽  
Sergio Cossu ◽  
...  

Positive electrostatic potential (V) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored in terms of the shape and values of the resulting V. Further precious insights into such factors are obtained through a rigorous decomposition of the V values in atomic or atomic group contributions, a task here achieved by extending the Bader–Gatti source function (SF) for the electron density to V. In this article, this general methodology is applied to a series of 4,4′-bipyridine derivatives containing atoms from Groups VI (S, Se) and VII (Cl, Br), and the pentafluorophenyl group acting as a π-hole. As these molecules are characterized by a certain degree of conformational freedom due to the possibility of rotation around the two C–Ch bonds, from two to four conformational motifs could be identified for each structure through conformational search. On this basis, the impact of chemical and conformational features on σ- and π-hole regions could be systematically evaluated by computing the V values on electron density isosurfaces (VS) and by comparing and dissecting in atomic/atomic group contributions the VS maxima (VS,max) values calculated for different molecular patterns. The results of this study confirm that both chemical and conformational features may seriously impact σ- and π-hole regions and provide a clear analysis and a rationale of why and how this influence is realized. Hence, the proposed methodology might offer precious clues for designing changes in the σ- and π-hole regions, aimed at affecting their potential involvement in noncovalent interactions in a desired way.


Sign in / Sign up

Export Citation Format

Share Document