Isoflavones from an Insect-Resistant Variety of Soybean and the Molecular Structure of Afrormosin

1986 ◽  
Vol 49 (6) ◽  
pp. 1126-1129 ◽  
Author(s):  
Porfirio Caballero ◽  
C. Michael Smith ◽  
Frank R. Fronczek ◽  
Nikolaus H. Fischer
2021 ◽  
Vol 12 ◽  
Author(s):  
Fenni Lv ◽  
Peng Wang ◽  
Enliang Zhang ◽  
Lingling Ma ◽  
Lulu Gao ◽  
...  

Although Catalpa bungei is a forest plant with considerable economic and ornamental value in China, its wood and decorative qualities are constrained by insect pests such as the shoot borer Omphisa plagialis (Lepidoptera). Overexpressing insect resistance genes such as crystal genes to develop an insect-resistant variety of C. bungei is an environmental and ecological approach. However, genotype limitations and low regeneration rates of embryogenic calli (EC) inhibit the development of transformation and the insect-resistant gene expression system in C. bungei. Here, we first established embryogenic callus induction and regeneration systems of five genotypes using mature seed and stem segment explants; the highest induction and regeneration rates of EC were 39.89 and 100%, respectively. Next, an efficient and stable Agrobacterium-mediated genetic transformation system was developed from EC and its positive frequency was up to 92.31%. Finally, using the transformation system, 15 and 22 transgenic C. bungei lines that expressed Cry2A and Cry9Aa-like were generated, respectively. These transgenic lines that exhibited significantly higher resistance to O. plagialis in the laboratory and field have great promise for meeting the challenge of future pest management under changing climatic conditions. Additionally, this efficient, fast, and stable transformation system could be a potential tool for gene function analysis and forest tree genetic improvement.


1945 ◽  
Vol 22 (4) ◽  
pp. 97-103 ◽  
Author(s):  
M. E. Gardner ◽  
Robert Schmidt ◽  
F. J. Stevenson

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Muhammad RIZWAN ◽  
Saifullah ABRO ◽  
Muhammad Usman ASIF ◽  
Amjad HAMEED ◽  
Wajid MAHBOOB ◽  
...  

Abstract Background Sucking insect pests cause severe damage to cotton crop production. The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses. Considering the role of morphological and biochemical host plant resistance (HPR) traits in plant defense, 12 cotton genotypes/varieties were evaluated for leaf area, leaf glanding, total soluble sugars, total soluble proteins, total phenolics, tannin and total flavonoids against fluctuating populations of whitefly, thrips and jassid under field conditions. Results The population of these insects fluctuated during the growing season and remained above threshold level (whitefly > 5, thrips > (8–10), or jassid > 1 per leaf) during late June and early July. Strong and negative association of whitefly (r = − 0.825) and jassid (r = − 0.929) with seed cotton yield was observed. Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30. NIAB-Kiran followed by NIAB-878 and Sadori were the most resistant, with the mean population of 1.41, 1.60, 1.66 (whitefly); 2.24, 2.32, 2.53 (thrips) and 0.37, 0.31, 0.36 (jassid), respectively. The resistant variety NIAB-Kiran showed less soluble sugars (8.54 mg·g− 1), soluble proteins (27.11 mg·g− 1) and more phenolic (36.56 mg·g− 1) and flavonoids (13.10 mg·g− 1) as compared with the susceptible check Glandless-1. Moreover, all insect populations were positively correlated with total soluble sugars and proteins. Whitefly populations exhibited negative response to leaf gossypol glands, total phenolics, tannins and flavonoids. The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits. Conclusion The identified resistant resources and HPR traits can be deployed against sucking insect pests’ complex in future breeding programs of developing insect resistant cotton varieties.


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


1963 ◽  
Vol 60 ◽  
pp. 52-55
Author(s):  
István Kiss ◽  
Lajos Matus ◽  
István Opauszky

Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
S Groscurth ◽  
T Kühn ◽  
P Kessler ◽  
V Rukachaisirikul

Sign in / Sign up

Export Citation Format

Share Document