catalpa bungei
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 26)

H-INDEX

7
(FIVE YEARS 4)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 96
Author(s):  
Shengqi Jian ◽  
Tiansheng Zhu ◽  
Jiayi Wang ◽  
Denghua Yan

Catalpa bungei C. A. Mey. (C. bungei) is one of the recommended native species for ecological management in China. It is a fast-growing tree of high economic and ecological importance, but its rare resources, caused by anthropogenic destruction and local climatic degradation, have not satisfied the requirements. It has been widely recommended for large-scale afforestation of ecological management and gradually increasing in recent years, but the impact mechanism of climate change on its growth has not been studied yet. Studying the response of species to climate change is an important part of national afforestation planning. Based on combinations of climate, topography, soil variables, and the multiple model ensemble (MME) of CMIP6, this study explored the relationship between C. bungei and climate change, then constructed Maxent to predict its potential distribution under SSP126 and SSP585 and analyzed its dominant environmental factors. The results showed that C. bungei is widely distributed in Henan, Hebei, Hubei, Anhui, Jiangsu, and Shaanxi provinces and others where it covers an area of 2.96 × 106 km2. Under SSP126 and SSP585, its overall habitat area will increase by more than 14.2% in 2080–2100, which mainly indicates the transformation of unsuitable areas into low suitable areas. The center of its distribution will migrate to the north with a longer distance under SSP585 than that under SSP126, and it will transfer from the junction of Shaanxi and Hubei province to the north of Shaanxi province under SSP585 by 2100. In that case, C. bungei shows a large-area degradation trend in the south of the Yangtze River Basin but better suitability in the north of the Yellow River Basin, such as the Northeast Plain, the Tianshan Mountains, the Loess Plateau, and others. Temperature factors have the greatest impact on the distribution of C. bungei. It is mainly affected by the mean temperature of the coldest quarter, followed by precipitation of the wettest month, mean diurnal range, and precipitation of the coldest quarter. Our results hence demonstrate that the increase of the mean temperature of the coldest quarter becomes the main reason for its degradation, which simultaneously means a larger habitat boundary in Northeast China. The findings provide scientific evidence for the ecological restoration and sustainable development of C. bungei in China.


Phyton ◽  
2022 ◽  
Vol 91 (3) ◽  
pp. 507-524
Author(s):  
Danlong Jing ◽  
Nan Wang ◽  
Nan Lu ◽  
Guanzheng Qu ◽  
Guolu Liang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Fenni Lv ◽  
Peng Wang ◽  
Enliang Zhang ◽  
Lingling Ma ◽  
Lulu Gao ◽  
...  

Although Catalpa bungei is a forest plant with considerable economic and ornamental value in China, its wood and decorative qualities are constrained by insect pests such as the shoot borer Omphisa plagialis (Lepidoptera). Overexpressing insect resistance genes such as crystal genes to develop an insect-resistant variety of C. bungei is an environmental and ecological approach. However, genotype limitations and low regeneration rates of embryogenic calli (EC) inhibit the development of transformation and the insect-resistant gene expression system in C. bungei. Here, we first established embryogenic callus induction and regeneration systems of five genotypes using mature seed and stem segment explants; the highest induction and regeneration rates of EC were 39.89 and 100%, respectively. Next, an efficient and stable Agrobacterium-mediated genetic transformation system was developed from EC and its positive frequency was up to 92.31%. Finally, using the transformation system, 15 and 22 transgenic C. bungei lines that expressed Cry2A and Cry9Aa-like were generated, respectively. These transgenic lines that exhibited significantly higher resistance to O. plagialis in the laboratory and field have great promise for meeting the challenge of future pest management under changing climatic conditions. Additionally, this efficient, fast, and stable transformation system could be a potential tool for gene function analysis and forest tree genetic improvement.


Author(s):  
Wei Liu ◽  
Huayu Liu ◽  
Yeye Hu ◽  
Meng Zhang ◽  
Nan Lu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Xiao ◽  
Juanjuan Ling ◽  
Fei Yi ◽  
Wenjun Ma ◽  
Nan Lu ◽  
...  

Lignin is a complex polymer in plant cell walls whose proportion is second only to that of cellulose and plays an important role in the mechanical properties of wood and stress resistance of plants. Here, we induced tension wood (TW) formation in Catalpa bungei by artificial bending and analyzed the lignin metabolism of the TW. LC-MS analysis showed that a significantly higher content of coniferyl aldehyde was observed in the TW cell wall than in the opposite wood (OW) and normal wood (NW) cell walls. TW had significantly lower contents of coniferyl alcohol than OW and NW. Raman spectroscopy results indicated that TW had lower total lignin than OW and NW. The transcription and translation levels of most of the differentially expressed genes (DEGs) involved in lignin monomer biosynthesis indicated upregulation in TW/OW and TW/NW. We found no significant difference in the transcription levels of three collision gases (CADs) between TW and OW or between NW, but their translation levels were significantly downregulated in TW, suggesting post-transcriptional control for CAD. We predicted and analyzed transcription factors that could target DEGs involved in lignin monomer biosynthesis in TW. Based on the analysis of the relationships of targeting and coexpression, we found that NAC (evm.model.group1.695) could potentially target 4CLs and CCoAOMT, that HD-Zip (evm.model.group7.1157) had potential targeting relationships with CCoAOMT, F5H, and CCR, and that their expression levels were significantly positive. It is speculated that the upregulation of NAC and HD-ZIP transcription factors activates the expression of downstream target genes, which leads to a significant increase in coniferyl aldehyde in TW. However, the decrease in total lignin in TW may be caused by the significant downregulation of CAD translation and the significant decrease in precursors (coniferyl alcohol). Whether the expression of CAD genes is regulated by post-transcriptional control and affects TW lignin metabolism needs further study.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lin Chang ◽  
Kang Liu ◽  
Liang-gui Wang ◽  
Xiu-lian Yang ◽  
Hui Sun

Chinese catalpa, Catalpa bungei C.A. Mey is native to China and has been widely cultivated as an important tree species for timber and ornamental purposes (Tao et al. 2019). The properties and high durability of the wood can resist the damage caused by microorganisms and insects (Xiao Y et al. 2019). In September 2020, stem cankers were observed in 5-year-old and 3-year-old C. bungei in a pilot experiment field covering 16-hectare area in Shuyang city (Jiangsu province, China) and in a nursery in Binhai city (Jiangsu Province, China), respectively. The disease incidence in both locations was about 1% to 3%. The typical disease symptoms include small to large, dark-brown and irregular-sunken canker around and along the stem under 2 meters from the stem base. The phloem and xylem of the symptomatic stem were dark brown and the xylem had larger necrosis than the phloem. The cross section of the diseased stem was partially died. The symptomatic stem were collected in both locations for pathogen isolation. In total, seven purified isolates from the diseased samples were obtained using potato dextrose agar (PDA) following standard isolation protocol (Huang et al. 2019). In order to determine the pathogenicity, 3-year-old Chinese catalpa seedlings were artificially inoculated with each of the seven isolates in April 2021. After removing the bark of the stem by a sterilized punch (diameter 6mm), an agar plug (diameter 6mm) pre-colonized by the isolate was inoculated to the stem and the inoculation point was sealed with parafilm. The agar plug without pre-colonization was used as control. Six tree seedlings were inoculated for each isolate. Ten days after inoculation, only the treatment with isolate QS.1 showed obvious discoloration around the inoculation point. One month after inoculation, the canker around the inoculation point was formed (3.4 cm ± 1.0 cm) and spread to the xylem, similar to the symptoms observed in the field. Isolate QS.1 was re-isolated successfully from the inoculated stem based on morphological characters, confirming the Koch's postulates and QS.1 as the causal pathogen. The isolate QS.1 formed white colonies with abundant aerial mycelia on V8 juice agar and produced a large amount of persistent and papillary ovoid sporangia with size of 22 ~ 45μm (average 31μm) × 18 ~ 39μm (average 23μm) in 10% aqueous solution of V8. The spore was spherical with thick-wall and diameter of 24 ± 3.9μm. The morphology of QS.1 is similar to that of Phytophthora nicotianae. The genomic DNA of representative isolate QS.1 was extracted from mycelium by a modified CTAB method (Murray et al. 1980). The rDNA internal transcribed spacer (ITS) region, β-tubulin and EF1-α genes were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), BTub_F1/TUBUR1 (L. et al. 2004) and EF1A_for/EF1A_rev (Blair et al. 2008), respectively. The BLAST results of these sequences (Accession No. MZ646302, MZ672116, and MZ675589, respectively) showed 99%, 100% and 100% identity with sequences of P. nicotianae (Accession No. KJ494902, KY205750, and MH359041), respectively. Based on the morphological characteristics and DNA analysis, isolate QS.1 was identified as P. nicotianae. To our best knowledge, this is the first report of P. nicotianae causing stem canker on Chinese Catalpa. This disease may pose potential threat on Catalpa due to the increase in Catalpa planting for economic and ecological purposes in China.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1036
Author(s):  
Zhenhua Liu ◽  
Wenjun Ma ◽  
Fangping Tong ◽  
Junhui Wang

Increasing levels of antimony (Sb) pollution have been recognized as an emerging environmental problem. Phytoremediation of Sb-contaminated soil is a green, economical, and effective method for restoring polluted soils. Here, we studied differences in Sb tolerance, accumulation, and transport by different genotypes of Catalpa bungei C. A. Mey, with the goal of identifying genotypes that are suitable for remediating Sb-contaminated soil. Different concentrations of Sb were applied to soil, and we analyzed variation in growth, biomass, Sb content in different organs, Sb transport capacity, oxidizing substances, antioxidants, and antioxidant enzyme activities in 10 C. bungei genotypes. Marked differences were found in plant height, ground diameter, and biomass among different genotypes at given Sb concentrations. The Sb concentration in different plant organs also varied between genotypes. The content of Sb in each genotype was proportional to the exposure. At 600 mg Sb/kg soil, the highest concentration of Sb in roots and leaves was found in Genotype 63, and that in stems was found in Genotype 8402. The lowest concentration of Sb in roots, stems, and leaves was found in Genotypes 8402, 2-8, and 20-01, respectively. At 1200 mg Sb/kg soil, Genotype 5-2 had the highest concentration of Sb in roots, and Genotype 1-1 had the highest concentration in stems and leaves. The lowest concentration of Sb in roots was in Genotype 72, and that in stems and leaves was found in Genotype 20-01. At 2000 mg Sb/kg soil, the highest concentration of Sb in roots was found in Genotype 5-8, in stems in Genotype 8402, and in leaves in Genotype 72. The lowest concentration of Sb in roots was observed in Genotype 72 and in stems and leaves in Genotype 2-8. After absorption by C. bungei, Sb mainly accumulated in the roots, and upward transfer ability was poor. The Sb biological concentration factor of roots of all genotypes was >1 at each tested Sb concentration. Our results demonstrate that all 10 C. bungei genotypes could be used for plant stabilization of Sb-contaminated soil. However, the different genotypes of C. bungei had different responses to different Sb concentrations. Based on root Sb accumulation values, at soil Sb concentrations around 600 mg/kg, Genotypes 1, 63, and 5-8 are suited to phytoremediation; Genotypes 5-8, 1, and 5-2 are suited to phytoremediation at soil Sb concentrations around 1200 mg/kg; and Genotypes 5-8, 1, and 8402 are suited to phytoremediation at soil Sb concentrations around 2000 mg/kg. We demonstrate for the first time that Sb-contaminated soil can be improved by using specific plant genotypes tailored to different levels of Sb pollution.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 868
Author(s):  
Yao Xiao ◽  
Junhui Wang ◽  
Huiling Yun ◽  
Guijuan Yang ◽  
Jianwei Ma ◽  
...  

Catalpa bungei is an important timber tree. Improvements in growth and wood quality are important goals of C. bungei breeding, and it is necessary to understand the genetic parameters of specific target traits and genetic correlation between growth traits and wood properties for tree breeding. In this study, the genetic parameters of height, diameter at breast height (DBH) and wood properties were estimated and genetic and phenotypic correlations between growth traits and wood properties were evaluated in C. bungei. Finally, different selection scenarios were used to evaluate and select optimal clones. The results showed that there were significant differences in growth and wood properties among clones. The wood hardness (0.66–0.79), basic density (0.89), air-dried density (0.89) and compression strength parallel to the grain of wood (CSP) (0.84) had high repeatability. The variance component proportions indicated that the variation in wood properties came mainly from different genotypes (clones) rather than from different individuals of the same clone. The DBH showed a significant negative genetic correlation with the hardness of radial section (HRS) (−643), basic density (−0.531) and air-dry density (−0.495). This unfavorable relationship makes it difficult to improve growth and wood quality simultaneously in C. bungei. We selected the optimal clones under different scenarios, and we obtained 7.75–9.06% genetic gains for growth in the scenario in which height and DBH were the target traits. Genetic gains of 7.43–14.94% were obtained for wood properties by selecting optimal clones in the scenario in which wood properties were the target traits. Approximately 5% and 4% genetic gains were obtained for growth and wood properties, respectively, for the combined selection. This study provides new insights into the genetic improvement of wood quality in C. bungei.


2021 ◽  
Vol 186 ◽  
pp. 104429
Author(s):  
Junchen Wang ◽  
Xiaomin Qin ◽  
Shaoqi Xu ◽  
Mengyao Zhao ◽  
Peiqi Shu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document