Proteomic Investigation of Glioblastoma Cell Lines Treated with Wild-Type p53 and Cytotoxic Chemotherapy Demonstrates an Association between Galectin-1 and p53 Expression

2007 ◽  
Vol 6 (2) ◽  
pp. 869-875 ◽  
Author(s):  
Maja Puchades ◽  
Carol L. Nilsson ◽  
Mark R. Emmett ◽  
Kenneth D. Aldape ◽  
Yongjie Ji ◽  
...  
2001 ◽  
Vol 155 (7) ◽  
pp. 1129-1136 ◽  
Author(s):  
Larissa Kotelevets ◽  
Jolanda van Hengel ◽  
Erik Bruyneel ◽  
Marc Mareel ◽  
Frans van Roy ◽  
...  

To analyze the implication of PTEN in the control of tumor cell invasiveness, the canine kidney epithelial cell lines MDCKras-f and MDCKts-src, expressing activated Ras and a temperature-sensitive v-Src tyrosine kinase, respectively, were transfected with PTEN expression vectors. Likewise, the human PTEN-defective glioblastoma cell lines U87MG and U373MG, the melanoma cell line FM-45, and the prostate carcinoma cell line PC-3 were transfected. We demonstrate that ectopic expression of wild-type PTEN in MDCKts-src cells, but not expression of PTEN mutants deficient in either the lipid or both the lipid and protein phosphatase activities, reverted the morphological transformation, induced cell–cell aggregation, and suppressed the invasive phenotype in an E-cadherin–dependent manner. In contrast, overexpression of wild-type PTEN did not counteract Ras-induced invasiveness of MDCKras-f cells expressing low levels of E-cadherin. PTEN effects were not associated with marked changes in accumulation or phosphorylation levels of E-cadherin and associated catenins. Wild-type, but not mutant, PTEN also reverted the invasive phenotype of U87MG, U373MG, PC-3, and FM-45 cells. Interestingly, PTEN effects were mimicked by N-cadherin–neutralizing antibody in the glioblastoma cell lines. Our data confirm the differential activities of E- and N-cadherin on invasiveness and suggest that the lipid phosphatase activity of PTEN exerts a critical role in stabilizing junctional complexes and restraining invasiveness.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3944-3944 ◽  
Author(s):  
Jianfang Zeng ◽  
Alice Soragni ◽  
Jo Ishizawa ◽  
Vivian Ruvolo ◽  
Christopher B. Benton ◽  
...  

Abstract Background: The tumor suppressor p53 is a master regulator of apoptosis, autophagy, cell cycle, and senescence. It is inactivated via mutation in approximately 50% of solid tumors, but only in 15% of hematopoietic malignancies including acute myeloid leukemia (AML). A recently proposed mechanism has linked loss of p53 function with its amyloid aggregation. Conceptually, certain p53 mutations can favor partial unfolding of the protein and expose a natively buried aggregation-prone segment. This can result in amyloidogenic aggregation and prevent p53 transcriptional activity and anti-tumor functions. The cell-permeable peptide ReACp53, has been recently developed to block p53 aggregation and restore its transcriptional function in the nucleus as well as its ubiquitination by MDM2. ReACp53 showed significant cytotoxicity in ovarian cancer but no toxicity to normal hematopoietic cells in animal experiment. We sought to determine the anti-tumor activity of ReACp53 in hematopoietic malignancies. Results: We examined the p53 status in 23 malignant hematopoietic cell lines by PCR, Sanger sequencing, and immunoblotting. Two cell lines were null for p53 expression, one harbored frame shift mutations, 11 cell lines expressed various missense p53 mutations, one cell line had an in frame deletion of p53, and eight cell lines expressed wild-type p53. Additionally, immunofluorescence staining (IF) with the conformation-specific PAb240 antibody revealed high levels of cytoplasmic, partially unfolded p53 in the cells expressing mutant p53. In p53 wild-type cells, p53 protein was mainly localized in the nucleus and was negative for PAb240. The p53 null and frame shift-mutant cells showed no p53 expression. All the cells were treated short-term with various concentrations of ReACp53, or a scrambled peptide, and assessed for apoptosis by flow cytometry. We found that ReACp53 was cytotoxic not only to the p53-mutant cells, but also to the wild-type p53 lines. In fact, all p53 wild type AML cell lines were highly sensitive. The p53 negative cell lines were seemingly resistant to short-term exposure to ReACp53. DeltaNp73, an isoform of p73 that antagonizes p53 and TAp73, is expressed in most AML cells and also has a similar aggregation-prone segment. We examined the levels of DeltaNp73 and total p73 in 12 AML cell lines by PCR, immunoblotting, and IF. Both proteins were overexpressed in all five wild-type p53 cell lines, and DeltaNp73 was predominately localized in the cytoplasm of these cells. After short-term treatment with ReACp53, DeltaNp73 expression and localization didn't change in wild type p53 AML cells. Over-expressing DeltaNp73 in HEK293T cells enhanced their level of Thioflavin T staining indicating amyloid aggregation of the protein. Compared to controls, the DeltaNp73 overexpressing HEK293T cells were more prone to apoptosis following ReACp53 treatment. Absent of transactivation domain, DeltaNp73 is not expected to be restored to function like TAp73. Mutant p53 is known to cross-aggregate p73 and p63 because of their highly similar aggregation-prone segments, therefore, we hypothesize that DeltaNp73 cross-aggregated p53 and p73 and ReACp53 inhibited the aggregation as to restore p53 and TAp73 function and exposure to MDM2. We chose two wild-type p53 AML cell lines, OCI-AML3 and MOLM-14, which express MDM2 and are sensitive to the MDM2 inhibitor DS3032b. After short-term treatment with ReACp53, p53 and p73 (also a MDM2 target) expression decreased significantly in both cells. We tested the anti-leukemia efficacy of the DS3032b and ReACp53 combinatorial treatment in these cells and found that DS3032b synergized with ReACp53 to efficiently kill the cells compared to the cytotoxic activity of DS3032b or ReACp53 treatment alone. Conclusions: We demonstrate a new mechanism of DeltaNp73 inhibition of wild-type p53 and TAp73 mediated by induction of amyloid aggregation. ReACp53 showed apoptogenic efficacy in malignant hematopoietic cells, both in cells expressing wild-type p53 as well as mutant p53. In the wild-type AML cells where p73 and DeltaNp73 were overexpressed, sensitivity to ReACp53 increased. ReACp53 also exhibited synergistic activity when combined with the MDM2 inhibitor DS3032b in wild-type p53 cells. Together, our data suggest a novel mechanism of p53 inactivation by amyloid formation, that can be corrected in acute myeloid leukemia carrying either wild-type or mutant p53. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 94 (18) ◽  
Author(s):  
Richard J. Kraus ◽  
Blue-leaf A. Cordes ◽  
Saraniya Sathiamoorthi ◽  
Parita Patel ◽  
Xueying Yuan ◽  
...  

ABSTRACT We previously reported that the cellular transcription factor hypoxia-inducible factor 1α (HIF-1α) binds a hypoxia response element (HRE) located within the promoter of Epstein-Barr virus’s (EBV’s) latent-lytic switch BZLF1 gene, Zp, inducing viral reactivation. In this study, EBV-infected cell lines derived from gastric cancers and Burkitt lymphomas were incubated with HIF-1α-stabilizing drugs: the iron chelator deferoxamine (Desferal [DFO]), a neddylation inhibitor (pevonedistat [MLN-4924]), and a prolyl hydroxylase inhibitor (roxadustat [FG-4592]). DFO and MLN-4924, but not FG-4592, induced accumulation of both lytic EBV proteins and phosphorylated p53 in cell lines that contain a wild-type p53 gene. FG-4592 also failed to activate transcription from Zp in a reporter assay despite inducing accumulation of HIF-1α and transcription from another HRE-containing promoter. Unexpectedly, DFO failed to induce EBV reactivation in cell lines that express mutant or no p53 or when p53 expression was knocked down with short hairpin RNAs (shRNAs). Likewise, HIF-1α failed to activate transcription from Zp when p53 was knocked out by CRISPR-Cas9. Importantly, DFO induced binding of p53 as well as HIF-1α to Zp in chromatin immunoprecipitation (ChIP) assays, but only when the HRE was present. Nutlin-3, a drug known to induce accumulation of phosphorylated p53, synergized with DFO and MLN-4924 in inducing EBV reactivation. Conversely, KU-55933, a drug that inhibits ataxia telangiectasia mutated, thereby preventing p53 phosphorylation, inhibited DFO-induced EBV reactivation. Lastly, activation of Zp transcription by DFO and MLN-4924 mapped to its HRE. Thus, we conclude that induction of BZLF1 gene expression by HIF-1α requires phosphorylated, wild-type p53 as a coactivator, with HIF-1α binding recruiting p53 to Zp. IMPORTANCE EBV, a human herpesvirus, is latently present in most nasopharyngeal carcinomas, Burkitt lymphomas, and some gastric cancers. To develop a lytic-induction therapy for treating patients with EBV-associated cancers, we need a way to efficiently reactivate EBV into lytic replication. EBV’s BZLF1 gene product, Zta, usually controls this reactivation switch. We previously showed that HIF-1α binds the BZLF1 gene promoter, inducing Zta synthesis, and HIF-1α-stabilizing drugs can induce EBV reactivation. In this study, we determined which EBV-positive cell lines are reactivated by classes of HIF-1α-stabilizing drugs. We found, unexpectedly, that HIF-1α-stabilizing drugs only induce reactivation when they also induce accumulation of phosphorylated, wild-type p53. Fortunately, p53 phosphorylation can also be provided by drugs such as nutlin-3, leading to synergistic reactivation of EBV. These findings indicate that some HIF-1α-stabilizing drugs may be helpful as part of a lytic-induction therapy for treating patients with EBV-positive malignancies that contain wild-type p53.


2000 ◽  
Vol 14 (4) ◽  
pp. 391-396 ◽  
Author(s):  
Wayne Zundel ◽  
Cornelia Schindler ◽  
Daphne Haas-Kogan ◽  
Albert Koong ◽  
Fiona Kaper ◽  
...  

In glioblastoma-derived cell lines, PTEN does not significantly alter apoptotic sensitivity or cause complete inhibition of DNA synthesis. However, in these cell lines PTEN regulates hypoxia- and IGF-1-induced angiogenic gene expression by regulating Akt activation of HIF-1 activity. Restoration of wild-type PTEN to glioblastoma cell lines lacking functional PTEN ablates hypoxia and IGF-1 induction of HIF-1-regulated genes. In addition, Akt activation leads to HIF-1α stabilization, whereas PTEN attenuates hypoxia-mediated HIF-1α stabilization. We propose that loss ofPTEN during malignant progression contributes to tumor expansion through the deregulation of Akt activity and HIF-1-regulated gene expression.


Tsitologiya ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
L. N. Kiseleva ◽  
◽  
A. V. Kartashev ◽  
N. L. Vartanyan ◽  
A. A. Pinevich ◽  
...  

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Thao Thi Thanh Nguyen ◽  
Masato Shingyoji ◽  
Michiko Hanazono ◽  
Boya Zhong ◽  
Takao Morinaga ◽  
...  

AbstractA majority of mesothelioma specimens were defective of p14 and p16 expression due to deletion of the INK4A/ARF region, and the p53 pathway was consequently inactivated by elevated MDM2 functions which facilitated p53 degradaton. We investigated a role of p53 elevation by MDM2 inhibitors, nutlin-3a and RG7112, in cytotoxicity of replication-competent adenoviruses (Ad) lacking the p53-binding E1B55kDa gene (Ad-delE1B). We found that a growth inhibition by p53-activating Ad-delE1B was irrelevant to p53 expression in the infected cells, but combination of Ad-delE1B and the MDM2 inhibitor produced synergistic inhibitory effects on mesothelioma with the wild-type but not mutated p53 genotype. The combination augmented p53 phosphorylation, activated apoptotic but not autophagic pathway, and enhanced DNA damage signals through ATM-Chk2 phosphorylation. The MDM2 inhibitors facilitated production of the Ad progenies through augmented expression of nuclear factor I (NFI), one of the transcriptional factors involved in Ad replications. Knocking down of p53 with siRNA did not increase the progeny production or the NFI expression. We also demonstrated anti-tumor effects by the combination of Ad-delE1B and the MDM2 inhibitors in an orthotopic animal model. These data collectively indicated that upregulation of wild-type p53 expression contributed to cytotoxicity by E1B55kDa-defective replicative Ad through NFI induction and suggested that replication-competent Ad together with augmented p53 levels was a therapeutic strategy for p53 wild-type mesothelioma.


Sign in / Sign up

Export Citation Format

Share Document