proteomic investigation
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 46)

H-INDEX

35
(FIVE YEARS 5)

Aquaculture ◽  
2022 ◽  
pp. 737915
Author(s):  
Moha Esmaeili ◽  
Chris G. Carter ◽  
Richard Wilson ◽  
Seumas P. Walker ◽  
Matthew R. Miller ◽  
...  

2021 ◽  
Author(s):  
Matthias Fahrner ◽  
Peter Bronsert ◽  
Stefan Fichtner-Feigl ◽  
Andreas Jud ◽  
Oliver Schilling

AbstractColorectal adenocarcinomas (CRC) are one of the most commonly diagnosed tumors worldwide. Colorectal adenocarcinomas primarily metastasize into the liver and (less often) into the peritoneum. Patients suffering from CRC-liver metastasis (CRC-LM) typically present with a dismal overall survival compared to non-metastasized CRC patients. The metastasis process and metastasis-promoting factors in patients with CRC are under intensive debate. However, CRC studies investigating the proteome biology are lacking. Formalin-fixed paraffin-embedded (FFPE) tissue specimens provide a valuable resource for comprehensive proteomic studies of a broad variety of clinical malignancies. The presented pilot study compares the proteome of primary CRC and patient-matched CRC-LM. The applied protocol allows a reproducible and straightforward identification and quantification of over 2,600 proteins within the dissected tumorous tissue. Subsequent unsupervised clustering reveals distinct proteome biologies of the primary CRC and the corresponding CRC-LM. Statistical analysis yields multiple differentially abundant proteins in either primary CRC or their corresponding liver metastases. A more detailed analysis of dysregulated biological processes suggests an active immune response in the liver metastases, including several proteins of the complement system. Proteins with structural roles, e.g. cytoskeleton organization or cell junction assembly appear to be less prominent in liver metastases as compared to primary CRC. Immunohistochemistry corroborates proteomic high expression levels of metabolic proteins in CRC-LM. We further assessed how the in vitro inhibition of two in CRC-LM enriched metabolic proteins affected cell proliferation and chemosensitivity. The presented proteomic investigation in a small clinical cohort promotes a more comprehensive understanding of the distinct proteome biology of primary CRC and their corresponding liver metastases.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Karin Wåhlén ◽  
Hong Yan ◽  
Charlotte Welinder ◽  
Malin Ernberg ◽  
Eva Kosek ◽  
...  

2021 ◽  
Author(s):  
Andrea Cillingová ◽  
Renáta Tóth ◽  
Anna Mojáková ◽  
Igor Zeman ◽  
Romana Vrzoňová ◽  
...  

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in β-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


2021 ◽  
pp. 2100037
Author(s):  
Natalie Kurganovs ◽  
Hanzhi Wang ◽  
Xiaoyong Huang ◽  
Vladimir Ignatchenko ◽  
Andrew Macklin ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5696
Author(s):  
Enxhi Shaba ◽  
Claudia Landi ◽  
Alfonso Carleo ◽  
Lorenza Vantaggiato ◽  
Eugenio Paccagnini ◽  
...  

In the longtime challenge of identifying specific, easily detectable and reliable biomarkers of IPF, BALF proteomics is providing interesting new insights into its pathogenesis. To the best of our knowledge, the present study is the first shotgun proteomic investigation of EVs isolated from BALF of IPF patients. Our main aim was to characterize the proteome of the vesicular component of BALF and to explore its individual impact on the pathogenesis of IPF. To this purpose, ultracentrifugation was chosen as the EVs isolation technique, and their purification was assessed by TEM, 2DE and LC-MS/MS. Our 2DE data and scatter plots showed considerable differences between the proteome of EVs and that of whole BALF and of its fluid component. Analysis of protein content and protein functions evidenced that EV proteins are predominantly involved in cytoskeleton remodeling, adenosine signaling, adrenergic signaling, C-peptide signaling and lipid metabolism. Our findings may suggest a wider system involvement in the disease pathogenesis and support the importance of pre-fractioning of complex samples, such as BALF, in order to let low-abundant proteins-mediated pathways emerge.


Author(s):  
Enxhi Shaba ◽  
Claudia Landi ◽  
Alfonso Carleo ◽  
Lorenza Vantaggiato ◽  
Eugenio Paccagnini ◽  
...  

In the longtime challenge of identifying specific, easily-detectable and reliable biomarkers of Idiopathic Pulmonary Fibrosis (IPF), bronchoalveolar lavage fluid (BALF) proteomics is providing interesting new insights into its pathogenesis. To the best of our knowledge, the present study is the first shotgun proteomic investigation of EVs isolated from BALF of IPF patients. Our main aim was to characterize the proteome of the vesicular component of BALF and to explore its individual impact on the pathogenesis of IPF. To this purpose, ultracentrifugation was chosen as EVs isolation technique and their purification was assessed by TEM, 2DE and LC-MS/MS. Our 2DE data and scatter plots showed considerable differences between the proteome of EVs and that of whole BALF and of its fluid component. Analysis of protein content and protein functions evidenced that EV proteins are predominantly involved in cytoskeleton remodeling, adenosine signaling, adrenergic signaling, C-peptide signaling and lipid metabolism. Our findings may suggest a wider system involvement in the disease pathogenesis and support the importance of pre-fractioning of complex samples, like BALF, in order to let low-abundant proteins-mediated pathways to emerge.


Sign in / Sign up

Export Citation Format

Share Document