Identification, Quantification, and Functional Aspects of Skeletal Muscle Protein-Carbonylationin Vivoduring Acute Oxidative Stress

2010 ◽  
Vol 9 (5) ◽  
pp. 2516-2526 ◽  
Author(s):  
Maria Fedorova ◽  
Nadezhda Kuleva ◽  
Ralf Hoffmann
Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Koichi Yada ◽  
Llion Arwyn Roberts ◽  
Natsumi Oginome ◽  
Katsuhiko Suzuki

The purpose of this study was to investigate the effects of acacia polyphenol (AP) supplementation on exercise-induced oxidative stress in mouse liver and skeletal muscle. Plasma aspartate aminotransferase (AST), liver and skeletal muscle levels of thiobarbituric acid reactive substance (TBARS), and levels of skeletal muscle protein carbonyls increased immediately after exhaustive exercise. Exhaustive exercise also decreased liver glutathione (GSH). These results suggest that the exhaustive exercise used in this study induced tissue damage and oxidative stress. Contrary to our expectations, AP supplementation increased plasma AST and alanine aminotransferase activities, liver levels of TBARS, and protein carbonyls. Furthermore, AP supplementation decreased glutathione and glutathione peroxidase activity in the liver. On the other hand, AP supplementation decreased TBARS levels in skeletal muscle. These results suggest that oral high-dose AP administration decreased oxidative stress in skeletal muscle but induced oxidative stress in the liver and increased hepatotoxicity.


Nature ◽  
1958 ◽  
Vol 182 (4645) ◽  
pp. 1312-1313 ◽  
Author(s):  
YOSHITO OGAWA

2004 ◽  
Vol 17 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Thomas C. Vary ◽  
Christopher J. Lynch

Sepsis initiates a unique series of modifications in the homeostasis of N metabolism and profoundly alters the integration of inter-organ cooperatively in the overall N and energy economy of the host. The net effect of these alterations is an overall N catabolic state, which seriously compromises recovery and is semi-refractory to treatment with current therapies. These alterations lead to a functional redistribution of N (amino acids and proteins) and substrate metabolism among injured tissues and major body organs. The redistribution of amino acids and proteins results in a quantitative reordering of the usual pathways of C and N flow within and among regions of the body with a resultant depletion of the required substrates and cofactors in important organs. The metabolic response to sepsis is a highly integrated, complex series of reactions. To understand the regulation of the response to sepsis, a comprehensive, integrated analysis of the fundamental physiological relationships of key metabolic pathways and mechanisms in sepsis is essential. The catabolism of skeletal muscles, which is manifested by an increase in protein degradation and a decrease in synthesis, persists despite state-of-the-art nutritional care. Much effort has focused on the modulation of the overall amount of nutrients given to septic patients in a hope to improve efficiencies in utilisation and N economies, rather than the support of specific end-organ targets. The present review examines current understanding of the processes affected by sepsis and testable means to circumvent the sepsis-induced defects in protein synthesis in skeletal muscle through increasing provision of amino acids (leucine, glutamine, or arginine) that in turn act as nutrient signals to regulate a number of cellular processes.


1972 ◽  
Vol 47 (4) ◽  
pp. 653-661 ◽  
Author(s):  
Mari K. Haddox ◽  
Nancy E. Newton ◽  
Diane K. Hartle ◽  
Nelson D. Goldberg

Sign in / Sign up

Export Citation Format

Share Document